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Abstract. A third workshop on small-x physics, within the Small-x Collaboration, was held in Hamburg
in May 2004 with the aim of overviewing recent theoretical progress in this area and summarizing the
experimental status.

1 Introduction

In this report we summarize some of the recent develop-
ments in small-x physics, based on presentations and dis-
cussions during the Lund small-x workshop held in DESY,
Hamburg, in May 2004.
Although accepted as an integral part of the standard

model, QCD is still not a completely understood theory.
The qualitative aspects of asymptotic freedom and con-
finement are under control, but the quantitative predictive
power of the theory is not at a satisfactory level. In par-
ticular this is true for the non-perturbative regime, where
most of our understanding comes from phenomenological
models, such as the Lund string fragmentation model, and
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also from lattice gauge calculations and effective theories,
such as chiral perturbation theory. For the perturbative as-
pects ofQCD, the situation ismore satisfactory. In theweak
coupling limit, the collinear factorization theorem with so-
called DGLAP evolution [1–4] is working well and is under
good theoretical control. Many cross sections have been
calculated to next-to-leading order (NLO), several even to
next-to-next-to-leading order, and some calculations in-
volving (next-to)3-leading order have begun (see e.g. [5]
and references therein). The quantitative precision in this
regime is approaching the per-mille level, which is very en-
couraging although still very far from the precision in QED.
However, there is a domain, still in the perturbative

regime, where our understanding is lacking. This is the
region of high energy and moderate momentum transfer,
such as small-x deeply inelastic scattering (DIS) as meas-
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ured at HERA and low to medium E⊥ jet production at
the Tevatron. In this region, the collinear factorization
must break down as the perturbative expansion becomes
plagued by large logarithms of the ratio between the total
collision energy and the momentum transfer of the hard
sub-process, which needs to be resummed to all orders to
obtain precision predictions from QCD. These logarithms
arise from the large increase of the phase space available for
additional gluon emissions, resulting in a rapid rise of the
gluon density in hadrons with increasing collision energy
or, equivalently, decreasing momentum fraction, x.
In this high energy limit, QCD is believed to be cor-

rectly approximated by the BFKL evolution [6–8], and
cross sections should be possible to predict using k⊥-
factorization [9–12] where off-shell matrix elements are
convoluted with unintegrated parton densities obeying
BFKL evolution. However, so far the precision in the
predictions from k⊥-factorization has been very poor. Al-
though BFKL evolution correctly predicted the strong rise
of the F2 structure function with decreasing x at HERA on
a qualitative level, it turned out that the next-to-leading
order corrections to BFKL are huge [13, 14], basically mak-
ing any calculation with leading-logarithmic accuracy in
k⊥-factorization useless.
Several attempts have been made to tame the NLO

corrections to BFKL by e.g. matching to the collinear
limit [15] and matching this with off-shell matrix elements
or impact factors calculated to NLO. Another strategy is
based on the fact that a large part of the NLO corrections
to BFKL can be traced to the lack of energy and mo-
mentum conservation in the LO evolution [16]. Although
energy and momentum is still not conserved in NLO
evolution, the contributions from ladders which violates
energy-momentum conservations are reduced. Amend-
ing the leading-logarithmic evolution with kinematical
constraints, either approximately in analytical calcula-
tions [17] or exactly in Monte Carlo programs [18–21],
should possibly lead to more reasonable QCD predictions,
although still formally only to leading-logarithmic accu-
racy. However, so far none of these strategies have been
able to fulfill their ambitions, and the reproduction of avail-
able data is still not satisfactory.
The plot thickens further when considering the increase

in gluon density at small x. At high enough energy the
density of gluons becomes so high that they must start to
overlap and recombine, and we will encounter the phenom-
ena of multiple interactions, saturation and rapidity gaps.
In the non-perturbative region these phenomena have al-
ready been established, but there is currently no consensus
on whether effects of recombination of perturbative gluons
have been seen at e.g. HERA. Perturbative recombination
would require non-linear evolution equations, which then
also could break k⊥-factorization.
In our first review [22] we focused on the theoretical

and phenomenological aspects of k⊥-factorization, while in
the second [23] we also gave an overview of experimental
results in the small-x region. In this third review we will
continue to present recent developments in these areas, but
also give an overview and introduction to saturation effects
and non-linear evolution.

The layout of this report is as follows. First we discuss
some recent developments of k⊥-factorization in Sect. 2,
starting with the unintegrated parton densities ( Sect. 2.2)
and doubly unintegrated parton densities (Sect. 2.3) and
continuing with recent advances in NLO calculations
(Sects. 2.4 and 2.6). Then, in Sect. 3 we describe some phe-
nomenological applications of k⊥-factorization, looking at
how to use them to obtain QCD predictions for heavy
quark (Sect. 3.1) and quarkonium (Sect. 3.4) production.
In Sect. 4 we present the recent investigations by March-
esini and Mueller relating some aspects of jet physics to
BFKL dynamics, which could make it possible to study
this kind of evolution also in other environments. In Sect. 5
we give an introduction and overview of saturation phe-
nomena and non-linear evolution. Section 6 also deals with
saturation, but in the context of the so-called AGK cutting
rules which enables us to relate saturation with multi-
ple scatterings and diffraction. In Sect. 7 we review some
recent experimental results relating to the issues in the
previous sections, beginning with multiple interactions
and underlying events in Sect. 7.1, followed by rapidity
gaps between jets in Sect. 7.2, jet production at small x
in Sect. 7.3 and production of strange particles in DIS in
section Sect. 7.4. Finally we present a brief summary and
outlook in Sect. 8.

2 The k� t-factorization formalism

In the high energy limit, cross sections can be calculated
using k⊥-factorization [9–12] with convolution of a off-shell
(k⊥ dependent) partonic cross section σ̂(

x
z
, k2⊥) and an k⊥-

unintegrated parton density function F(z, k2⊥):

σ =

∫
dz

z
d2k⊥σ̂

(x
z
, k2⊥

)
F
(
z, k2⊥

)
. (1)

The unintegrated gluon density F(z, k2⊥) is described by
the BFKL [6–8] evolution equation in the region of asymp-
totically large energies (small x). An appropriate descrip-
tion valid for both small and large x is given by the CCFM
evolution equation [24–27], resulting in an unintegrated
gluon density, A(x, k2⊥, q̄

2), which is a function also of the
additional scale, q̄. Here and in the following we use the fol-
lowing classification scheme: xG(x, k2⊥) describes DGLAP
type unintegrated gluon distributions, xF(x, k2⊥) is used
for pure BFKL and xA(x, k2⊥, q̄

2) stands for a CCFM type
or any other type having two scales involved. Different ap-
proaches to the unintegrated parton density functions have
been discussed in detail in [22, 23].
While still being formally at leading order, the uninte-

grated gluon densities incorporate effects from the next-
to-leading order in the collinear approach [28]. This is
discussed in more detail in the next subsections. To fur-
ther connect to the uncertainty estimates of cross section
calculated in the collinear approach, the change of the
renormalization and factorization scales are used to esti-
mate the influence and size of higher order corrections.
In [29] the CCFM unintegrated PDFs are determined such
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Fig. 1. Comparison of the CCFM uPDF obtained after chang-
ing the renormalization scale in the off-shell matrix element by
a factor 2 up and down

that the structure function F2 as measured at H1 [30, 31]
and ZEUS [32, 33] can be described after convolution with
the off-shell matrix element. This fit is repeated for the
renormalization scale in the off-shell matrix element var-
ied by a factor of 2 up and down, resulting in new sets of
PDFs [29], set A0+ and set A0−. These PDFs are com-
pared with the central set set A0 in Fig. 1.

2.1 Future fits of uPDF parameterizations

There are a number of possible measurements sensitive
to the transverse momentum of the propagating gluons
in the gluon ladder, and thereby suitable for investiga-
tions concerning the unintegrated gluon density of the pro-
ton. One possible observable is the difference in azimuthal
angle, ∆φ∗, of a di-jet system in the hadronic center of
mass frame. The differential cross section dσ

d∆φ∗ has been
measured at the Tevatron [34–39] and only recently at
HERA [40, 41]. The quantity

S =

∫ α
0
Ndi-jet(∆φ

∗, x,Q2)d∆φ∗∫ π
0 Ndi-jet(∆φ

∗, x,Q2)d∆φ∗
, (2)

first proposed in [42], has been measured [43] and showed
a large sensitivity to the unintegrated gluon density. An-
other measurement, proposed in [44], would be to meas-
ure dσ

dp21,t dp
2
2,t
where dp2i,t are the transverse momenta of

a charm anti-charm pair. In [44], also an alternative to this
was discussed, namely to measure the quantity

f
(
p2max > kp

2
min;W

)
≡
σ
(
p2max > kp

2
min;W

)
σ(W )

, (3)

where p2max = max(dp
2
1,t, dp

2
2,t), p

2
min = min(dp

2
1,t, dp

2
2,t)

and k is a constant. This quantity would be a measure of
the spread in the p21,t×p

2
2,t plane. Yet another possibility

would be a direct reconstruction of xg and k
2
g,t from (DIS)

multi-jet events, thereby mapping the unintegrated gluon
density directly.
The unintegrated gluon density could also be con-

strained from global fits. So far, only fits to F2 have been

made [45], and a global fit using various data such as
forward jets, 2+n jets, heavy quarks and azimuthal jet–
jet correlations would further constrain the unintegrated
gluon density.

2.2 The need for doubly unintegrated parton density
functions

Conventional parton densities are defined in terms of
an integral over all transverse momentum and virtuality
for a parton that initiates a hard scattering. While such
a definition of an integrated parton density is appropriate
for very inclusive quantities, such as the ordinary structure
functions F1 and F2 in DIS, the definition becomes increas-
ingly unsuitable as one studies less inclusive cross sections.
Associated with the use of integrated parton densities are
approximations on parton kinematics that can readily lead
to unphysical cross sections when enough details of the
final state are investigated.
We propose that it is important to the future use of

pQCD that a systematic program be undertaken to re-
formulate factorization results in terms of fully uninte-
grated densities, which are differential in both transverse
momentum and virtuality. These densities are called “dou-
bly unintegrated parton densities” by Watt, Martin and
Ryskin [46, 47] (discussed in the next section), and “parton
correlation functions” by Collins and Zu [48]; these authors
have presented the reasoning for the inadequacy, in differ-
ent contexts, of the more conventional approach. The new
methods have their motivation in contexts such as Monte
Carlo event generators where final state kinematics are
studied in detail. Even so, a systematic reformulation for
other processes to use unintegrated densities would present
a unified methodology.
These methods form an extension of k⊥-factorization,

which has so far been applied in small-x processes and, as
the CSS formalism [49], in the transverse-momentum dis-
tribution of the Drell–Yan and related processes.
The problem that is addressed is nicely illustrated by

considering photoproduction of cc̄ pairs. In Fig. 2, we com-
pare three methods of calculation carried out within the
CASCADE event generator [20, 50].

– Use of a conventional gluon density that is a function of
parton x alone.
– Use of a k⊥ density that is a function of parton x and
k⊥. These are the objects usually called “unintegrated
parton densities”.
– Use of a “doubly unintegrated density” that is a func-
tion of parton x, k⊥ and virtuality, that is, of the
complete parton four-momentum, in CASCADE taken
after the full simulation of the initial state parton
showering.

The partonic sub-process in all cases is the lowest order
photon–gluon fusion process γ+ g −→ c+ c̄. Two differ-
ential cross sections are plotted: one as a function of the
transverse momentum of the cc̄ pair, and the other as
a function of the xγ of the pair. By xγ is meant the frac-
tional momentum of the photon carried by the cc̄ pair,
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Fig. 2. a and b: comparison between use of simple LO parton
model approximation and of the use of k⊥ densities for the p⊥
of cc̄ pairs in photoproduction, and for the xγ . c and d: compar-
ison of use of k⊥ densities and full simulation

calculated in the light-front sense as

xγ =

∑
i=c,c̄(Ei−pz i)

2yEe
=
p−cc̄
q−
.

Here Ee is the electron beam energy and the coordinates
are oriented so that the electron and proton beams are in
the −z and +z directions respectively.
In the normal parton-model approximation for the hard

scattering, the gluon is assigned zero transverse momen-
tum and virtuality, so that the cross section is restricted to
pTcc̄ = 0 and xγ =1, as shown by the solid lines in Fig. 2a,b.
When a k⊥ dependent gluon density is used, quite large
gluonic k⊥ can be generated, so that the pTcc̄ distribution
is spread out in a much more physical way, as given by the
dashed line in Fig. 2a. But as shown in plot b, xγ stays
close to unity. Neglecting the full recoil mass m is equiva-

lent of taking k2 =
−k2⊥
1−x with k

2 being the virtuality of the
gluon, k2⊥ its transverse momentum and x its light cone en-
ergy fraction. This gives a particular value to the gluon’s
k−. When we also take into account the correct virtuality
of the gluon, there is no noticeable change in the pTcc̄ dis-
tribution – see Fig. 2c (dotted line) – since that is already
made broad by the transversemomentum of the gluon. But
the gluon’s k− is able to spread out the xγ distribution,
as in Fig. 2d with the dotted line. This is equivalent with
a proper treatment of the kinematics and results in k2 =
−k2⊥−xm

2

1−x , which can be significant for finite x. Clearly, the
use of the simple parton-model kinematic approximation

gives unphysically narrow distributions. The correct phys-
ical situation is that the gluon surely has a distribution in
transverse momentum and virtuality, and for the consid-
ered cross sections neglect of parton transverse momentum
and virtuality leads to wrong results. It is clearly better to
have a correct starting point even at LO, for differential
cross sections such as we have plotted.
Therefore it is highly desirable to reformulate perturba-

tive QCDmethods in terms of doubly unintegrated parton
densities from the beginning. A full implementation will
be able to use the full power of calculations at NLO and
beyond.

2.3 Doubly unintegrated PDFs

The notation for the two-scale unintegrated gluon distri-
bution, xA(x, k2⊥, q̄

2), used in [22, 23] and elsewhere in this
report, is related to that used in this section by

xA
(
x, k2⊥, q̄

2
)
↔ fg

(
x, k2t , µ

2
)
/k2t . (4)

2.3.1 Unintegrated PDFs from integrated ones

Existing analyses of the CCFM equation are based on
numerical solutions via Monte Carlo methods. Kimber,
Martin and Ryskin [51] showed that, in a certain ap-
proximation, it is possible to obtain two-scale UPDFs,
fa(x, k

2
t , µ

2), from single-scale distributions, with the de-
pendence on the second scale µ introduced only in the last
step of the evolution. It was found that this “last-step”
prescription gave similar results whether the single-scale
distributions were evolved with a unified BFKL-DGLAP
equation [52] or purely with the DGLAP equation, indicat-
ing that angular ordering is more important than small-x
effects. Here, we summarize the procedure [46, 51] for ob-
taining UPDFs from the conventional DGLAP-evolved in-
tegrated PDFs, a(x, µ2) = xg(x, µ2) or xq(x, µ2).
The UPDFs are constructed to satisfy the normaliza-

tion conditions

∫ µ2
0

dk2t
k2t
fa
(
x, k2t , µ

2
)
= a(x, µ2) , (5)

which are ensured by defining the UPDFs to be [46, 51]

fa
(
x, k2t , µ

2
)
≡

∂

∂ ln k2t

[
a
(
x, k2t

)
Ta
(
k2t , µ

2
)]

= Ta
(
k2t , µ

2
) αs (k2t )
2π

×
∑
b=g,q

∫ 1
x

dzPab(z)b
(x
z
, k2t

)
, (6)

where the Sudakov form factors are

Ta
(
k2t , µ

2
)
≡

exp

⎛
⎝−

∫ µ2
k2t

dκ2t
κ2t

αs
(
κ2t
)

2π

∑
b=g,q

∫ 1
0

dζ ζ Pba(ζ)

⎞
⎠ , (7)

and Pba are the unregulated LO DGLAP splitting kernels.
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In addition, it is necessary to apply angular-ordering
constraints due to color coherence,which regulate the singu-
larities in (6) and (7) arising from soft gluon emission. These
constraints are not applied for quark emissionwhere there is
no “coherence” effect. The explicit expressions for the unin-
tegrated gluon and quark distributions are given in [46].
This approach to UPDFs amounts to relaxing the

DGLAP approximation of strongly ordered transverse mo-
menta along the evolution chain only in the last evolution
step. If we consider DIS in the Breit frame, where the
proton has four-momentum p and the virtual photon has
four-momentum q, then the penultimate parton in the evo-
lution chain, with four-momentum kn−1 = (x/z) p, splits to
a final parton with four-momentum

kn ≡ k ≡
(
k+, k−,kt

)
= xp−βq′+k⊥ , (8)

where the plus and minus components are k± ≡ k0±k3. In
the Breit frame we have

p= (Q/xBj, 0,0) , (9)

q′ ≡ q+xBjp= (0, Q,0) , (10)

k⊥ = (0, 0,kt) , (11)

so that p2 = 0 = q′
2
, q2 =−Q2 and k2⊥ =−k

2
t . The condi-

tion that the parton emitted in the last evolution step is
on-shell, (kn−1−kn)2 = 0, gives

β =
xBj

x

z

(1− z)

k2t
Q2
, (12)

so k2 = −k2t /(1− z). In the high energy (small-x) limit,
where gluons dominate, we have z→ 0, so k � xp+k⊥ and
k2 �−k2t . Cross sections can then be calculated using the
kt-factorization formalism,

σγ
∗p =

∫ 1
xBj

dx

x

∫ ∞
0

dk2t
k2t
fg
(
x, k2t , µ

2
)
σ̂γ
∗g∗ , (13)

where the partonic cross section σ̂γ
∗g∗ is calculated with an

off-shell incoming gluon.

2.3.2 Doubly-unintegrated PDFs

Away from the high energy limit, where we have finite
z, the partonic cross section of (13) will necessarily have

Fig. 3. Illustration of (z, kt)-factorization for the doubly-unintegrated gluon distribution, fg(x, z, k
2
t , µ

2), shown in the final dia-
gram. In the first two diagrams the penultimate parton in the DGLAP evolution chain, with 4-momentum kn−1 = (x/z) p, splits
into a gluon with 4-momentum kn ≡ k = xp−β q

′+k⊥

some z dependence through the q′ component, i.e. the mi-
nus component, of the four-momentum k (8). Therefore,
we should consider doubly-unintegrated PDFs (DUPDFs),
fa(x, z, k

2
t , µ

2), which satisfy

∫ 1
x

dzfa
(
x, z, k2t , µ

2
)
= fa

(
x, k2t , µ

2
)
. (14)

From (6), the DUPDFs are

fa
(
x, z, k2t , µ

2
)
= Ta

(
k2t , µ

2
) αs (k2t )
2π

×
∑
b=g,q

Pab(z)b
(x
z
, k2t

)
, (15)

apart from the angular-ordering constraints. The explicit
expressions for the doubly-unintegrated gluon and quark
distributions are given in [46]. The kt-factorization for-
mula (13) is then generalized to the “(z, kt)-factorization”
formula [46]

σγ
∗p =
∑
a=g,q

∫ 1
xBj

dx

x

∫ 1
x

dz

∫ ∞
0

dk2t
k2t
fa
(
x, z, k2t , µ

2
)
σ̂γ
∗a∗ .

(16)

Note that fa(x, z, k
2
t , µ

2) are linear densities in z, but loga-
rithmic in x and k2t . This idea is illustrated in Fig. 3 for the
case a= g.
It is not immediately obvious how the partonic cross

sections σ̂γ
∗a∗ in (16) should be calculated. Recall that

they can be written

σ̂ =

∫
dΦ|M|2/F , (17)

where dΦ is the phase-space element, |M|2 is the squared
matrix element, and F is the flux factor. The phase-space
element dΦ can be calculated with the full kinematics, that
is, with k = xp−βq′+k⊥. The flux factor F is taken to be
the same as in collinear factorization (and in kt-factoriza-
tion), that is, F = 4xp · q. The last evolution steps in Fig. 3
only factorize from the rest of the diagram, to give the LO
DGLAP splitting kernels, in the leading-logarithmic ap-
proximation (LLA), that is, in either the collinear (kt→ 0)
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Fig. 4. Comparison with H1 inclusive jet
production data [53] in three pseudora-
pidity (ηLAB) bins. The predictions of
the (z, kt)-factorization approach based
on DUPDFs [46] (which is much simpler
to implement) are in good agreement with
the conventional QCD approach. In some
bins the predictions of the latter approach
are hidden beneath the bold lines of the
(z, kt)-factorization approach, at the re-
spective order

Fig. 5. pT distribution of W bosons produced at the Tevatron calculated using (z, kt)-factorization [47], compared to DO
data [56]
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or high energy (z→ 0) limits. Therefore, |M|2 should be
evaluated with either k = xp or k = xp+ k⊥, in order to
provide the factorization between the DUPDF and the sub-
process labeled σ̂ in Fig. 3. For the specific case of inclusive
jet production in DIS and working in an axial gluon gauge,
it was observed in [46] that the main effect of the terms
“beyond LLA” (proportional to β (12)) was to suppress
soft gluon emission, and that these terms made a negligi-
ble difference to the cross sectionwhen the angular-ordering
constraints were applied.
The prescription adopted in [46] was to evaluate |M|2

in the collinear approximation (k = xp), so that a (z, kt)-
factorization calculation approximately reproduces the
collinear factorization calculation starting one rung down
as in the first two diagrams of Fig. 3, that is, where the sub-
process is evaluated at one order higher in αs. This was
demonstrated for inclusive jet production in DIS, where
the LO sub-process is simply γ∗q∗→ q. Similarly, a “NLO”
calculation, where the sub-processes are γ∗g∗→ qq̄ and
γ∗q∗→ qg, was found to give results close to the conven-
tional NLO QCD calculation, where the sub-processes are
O(α2s ); see Fig. 4.
In [47], the (z, kt)-factorization formalismwas extended

to hadron–hadron collisions and applied to predict the
pT distributions of vector bosons (V =W,Z) and stan-
dard model Higgs bosons (H). For pT�MV,H, fixed-order

Fig. 6. pT distribution of SM Higgs bosons
produced at the LHCwith mass 125 GeV calcu-
lated using (z, kt)-factorization [47], compared
to various resummed and parton shower pre-
dictions which are all matched to fixed-order
calculations at large pT (apart from HER-
WIG) [57]

collinear factorization calculationsdiverge,with ln(MV,H/pT)
terms appearing in the perturbation series due to soft and
collinear gluon emission. Traditional calculations combine
fixed-order perturbation theory at high pT with either an-
alytic resummation or numerical DGLAP-based parton
shower formalisms at low pT, with some matching criterion
to decidewhen to switch between the two. It has been shown
in [54, 55] that UPDFs obtained from an approximate solu-
tion of the CCFM evolution equation embody the conven-
tional soft gluon resummation formulae. In the framework
of (z, kt)-factorization, the lowest order sub-processes are
simply q∗1 q

∗
2 → V and g

∗
1 g
∗
2 →H. A good description was

obtained in [47] of the pT distributions ofW and Z bosons
produced at the Tevatron Run 1 over the whole pT range;
see Fig. 5. The predicted Higgs pT distribution at the LHC
was found to reproduce, to a fair degree, the predictions
of more elaborate theoretical studies [57], in particular the
NNLL+NLOresummation approach ofGrazzini et al. [58];
see Fig. 6. Alternative predictions for Higgs production at
the LHC using the kt-factorization approach have been
made in [54, 59–61].
Note that matrix-element corrections are necessary

in DGLAP-based parton shower simulations at large pT.
Without such corrections, the HERWIG parton shower
prediction falls off dramatically at large pT �MH [62];
see Fig. 6. The same effect is observed in HERWIG pre-



60 The Small x Collaboration: Small-x phenomenology – Summary of the 3rd Lund small-x workshop in 2004

dictions for the pT distributions of W and Z bosons [63],
whereas in Fig. 5 the Tevatron data at large pT �MW are
well described without explicit matrix-element corrections.
Also, the (z, kt)-factorization prediction for Higgs produc-
tion is found to be close to the NLO fixed-order result at
large pT, see Fig. 6, suggesting that a large part of the sub-
leading terms are included by accounting for the precise
kinematics in the g∗1 g

∗
2 →H sub-process.

The integrated PDFs used as input in [46, 47] were de-
termined from a global fit to data using the conventional
collinear approximation [64]. A more precise treatment
would determine the integrated PDFs, used as input to the
last evolution step, from a new global fit to data using the
(z, kt)-factorization formalism.

2.4 NLO BFKL

Since the completion of the calculation of the next–to–
leading (NLL) corrections to the BFKL equation [13, 14]
for the forward kernel there has been a large activity fo-
cused on the study of the fundamental properties of the
NLL gluon Green’s function in the Regge limit of QCD at
high energies [15,65–82]. Recently, a powerful approach has
been developedwhich allows for the complete and exact an-
alysis of the solution at NLL. In [83] it was demonstrated
how it is possible to use D = 4+2ε-dimensional regular-
ization together with an effective gluon mass (λ) to explic-
itly show the cancellation of simple and double poles in ε.
This procedure carries a logarithmic dependence in λwhich
numerically cancels out when the full NLL BFKL evolution
is taken into account for a given center-of-mass energy, this
being a natural consequence of the infrared finiteness of the
full kernel. The basis of this approach is the iterated form of
the solution for the NLL BFKL equation, i.e.

f(ka,kb, Y ) = e
ωλ0 (ka)Y

{
δ(2)(ka−kb)

+
∞∑
n=1

n∏
i=1

∫
d2ki

[
θ
(
k2i −λ

2
)

πk2i
ξ (ki)

+ K̃r

(
ka+

i−1∑
l=0

kl,ka+
i∑
l=1

kl

)]

×

∫ yi−1
0

dyie(
ωλ0 (ka+

∑i
l=1 kl)−ω

λ
0 (ka+

∑i−1
l=1
kl))yi

× δ(2)
(
n∑
l=1

kl+ka−kb

)}
, (18)

where the strong ordering in longitudinal components of the
parton emission is encoded in the nested integrals in rapid-
ity with an upper limit set by the logarithm of the total en-
ergy in the process, y0= Y . TheReggeized formof the gluon
propagators in the t-channel,ωλ0 (q), in this approach reads

ωλ0 (q) =−ᾱs ln
q2

λ2
+
ᾱ2s
4

[
β0

2Nc
ln
q2

λ2
ln
q2λ2

µ4

+

(
π2

3
−
4

3
−
5

3

β0

Nc

)
ln
q2

λ2
+6ζ(3)

]
, (19)

with

ξ(X)≡ ᾱs+
ᾱ2s
4

(
4

3
−
π2

3
+
5

3

β0

Nc
−
β0

Nc
ln
X

µ2

)
(20)

being the corresponding part in the real emission kernel. To
complete the real part of the NLL kernel there are other
more complicated terms in K̃r which do not generate ε sin-
gularities when integrated over the full phase space of the
emissions, for details see [83].
The numerical implementation and analysis of the form

of solution as in (18) was carried out in [84]. At the light of
this study the known feature of a lower intercept at NLL
with respect to leading order (LL) was confirmed. As in
this approach it is not needed to expand on any eigenfunc-
tions there are no instabilities in the energy growth. This is
highlighted at the left hand side of Fig. 7 where the bands
correspond to uncertainties in the choice of renormaliza-
tion scale.
However, the space where the convergence of the per-

turbative expansion is poor is not in energy but in trans-
verse momenta. In particular, when the two transverse

Fig. 7.Analysis of the gluon Green’s function as obtained from
the NLL BFKL equation
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scales entering the forward gluon Green’s function are
of comparable magnitude then the NLL corrections are
smaller when compared to LL, this can be seen in the bot-
tom plot of Fig. 7. However when the ratio between these
scales largely departs from unity then the |NLL−LL| dif-
ference becomes large, driving, as it is well known, the
gluon Green’s function into an oscillatory behavior with
negative values.
The main advantage of the method here described is

that the Green’s function is generated integrating the
phase space using a MonteCarlo sampling of the differ-
ent parton configurations. This feature allows for a full
control of the average multiplicities and angular depen-
dences. The former can be extracted from the Poisson-like
distribution in the number of rungs, or iterations of the
kernel, needed to reach a convergent solution. This is ob-
tained numerically in the upper part of Fig. 8, where we
see e.g. that for Y = 5 it is should be enough to include
∼ 15 rungs/iterations. At the lower part of the same fig-
ure the angular correlations in the azimuthal angle of
di-jets with similar and large transverse energy, and low
hadronic activity in between, is studied in a toy cross sec-

Fig. 8. Distribution in the number of iterations and angular
dependence of the NLL gluon Green’s function

tion with simplified impact factors. The increase of the
angular correlation when the NLL terms are included in
such observable is a characteristic feature of these correc-
tions. This study is possible within this approach in an
immediate manner because the NLL kernel is treated in
full, without angular averaging, so there is no need to use
a Fourier expansion in angular variables via the introduc-
tion of conformal spins.
An interesting theoretical development in the context

of NLL BFKL was the calculation of the forward NLL ker-
nel in the conformally invariant N = 4 super Yang–Mills
theory [85, 86]. In such field theory the coupling remains
a constant even at NLL, opening the possibility of find-
ing the solution of the BFKL equation in a straightforward
way because the LL eigenfunctions are also so at NLL.
In particular, the kernel was calculated for all conformal
spins in [85, 86] allowing for the direct test of the angular
structure of the solution as obtained from the method here
described. This comparison between both approaches was
performed in [87]. In this case the gluon Regge trajectory
reads (with a denoting the coupling constant)

ωλ0 (q) =−a ln
q2

λ2
+
a2

4

[(
π2

3
−
1

3

)
ln
q2

λ2
+6 ζ(3)

]
(21)

and ξ = a+a2
(
1
12 −

π2

12

)
is a constant without logarithmic

dependence. For a precise determination of the contribu-
tion to the gluon Green’s function stemming from the dif-
ferent Fourier components in the azimuthal angle, i.e.

f(ka,kb, Y ) =
∞∑

n=−∞

fn (|ka|, |kb|, Y ) e
inθ , (22)

it is enough to extract the coefficients of the expansion, ei-
ther using the kernel calculated in [85, 86]

fn(|ka|, |kb|, Y ) =
1

π|ka||kb|

∫
dγ

2πi

(
k2a
k2b

)γ−12
eωn(a,γ)Y ,

(23)

or making use of the iterative solution explained in this
section [87]:

fn(|ka|, |kb|, Y ) =

∫ 2π
0

dθ

2π
f(ka,kb, Y ) cos (nθ) . (24)

The results from these two independent alternatives are
shown to coincide in Fig. 9. In the upper part the n = 0
Fourier component clearly dominates at large energies, de-
creasing the angular correlations as the energy increases. In
the lower part it is shown how the convergence in the an-
gular variable on the transverse plane is achieved after only
a few terms in the Fourier expansion for different values of
the available energy in the scattering process.
In this section a new analysis of the gluon Green’s func-

tion as obtained from the NLL BFKL kernel has been
presented. The method of solution is based on the Monte
Carlo integration of the phase space of different partonic
configurations in the multi-Regge and quasi-multi-Regge
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Fig. 9. Projections on conformal spins of the
N = 4 SUSY NLL BFKL Green’s function

kinematics. This method has many advantages with re-
spect to previous analysis of the same problem. It allows
for a reliable study of angular dependences in a straightfor-
ward manner, the multiplicities in the evolution are under
control, and it provides an exact solution even with run-
ning coupling terms which break the scale invariance in the
kernel. Many other studies are on their way using this pro-
cedure, as for example, deep inelastic scattering, the non–
forward case and the matching of this solution to different
impact factors for the final calculation of cross sections at
NLL where the BFKL approach will be relevant at present
and planned colliders.

2.5 Resummation at small x

The large magnitude of the NLLx correction in the high
energy limit, as well as the instabilities associated with it,

motivate the study of the resummation procedure in the
limit of small x. In particular it has been observed that, by
taking into account collinear limits correctly in the NLLx
equation, as it is required by the DGLAP dynamics, sta-
bilizes the high energy expansion. To understand this in
more detail let us recall the structure of the LLx BFKL
equation in the Mellin space where the Mellin variable γ is
conjugated to the logarithm of the transverse momentum
ln k2T/Λ

2,

χ(0)(γ) = 2ψ(1)−ψ(γ)−ψ(1−γ)∼
1

γ
+
1

1−γ
, (25)

where in the pole expansion of the kernel eigenvalue we
have retained only leading collinear and anticollinear poles.
These correspond exactly to the DGLAP strong ordering
of transversemomenta along the gluon ladder. In the NLLx
case the eigenvalue function takes on a complicated func-
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tional form which in the collinear limit is

χ(1)(γ)�
A1(0)

γ2
+
A1(0)

(1−γ)2
−
1

2γ3
−

1

2(1−γ)3

+O

(
1

γ
,
1

1−γ

)
(26)

with A1(0) =−11/12. Note the negative sign of the NLLx
contribution. It turns out that the collinear approximation
above reproduces the exact result within∼ 7% of accuracy.
The terms proportional to A1(0) are related to the non-
singular in x part of the LO DGLAP splitting function,
whereas the cubic poles come from the energy scale choice.
The highly singular form of the NLLx correction as it is
seen from (26) is the source of the large correction and po-
tentially unstable behavior. The resummation procedure
presented in [15] is based on four key ingredients.

– Taking into account the full splitting function at LO in
the DGLAP approximation.
– Incorporating the energy scale change in the form of the
kinematical constraint.
– Running of the coupling constant αs.
– Subtraction of the double and single poles in order to
avoid double counting.

In [68] a procedure based on the numerical solution of
the BFKL equation in momentum space was presented.
It takes into account all of the above-mentioned ingredi-
ents and yields stable result for the intercept and the gluon
Green’s function. Furthermore, the procedure for extrac-
tion the resummed splitting function was also presented,
which is more relevant for application to the deep inelastic
scattering processes such as measured at HERA. In Fig. 10
we show the resummed splitting function obtained in the
resummed scheme [68], together with the renormalization
scale variation and the part of the NNLO DGLAP split-
ting function singular in x. The characteristic feature of
the resummed splitting function Pgg is the strong pre-
asymptotic behavior at intermediate values of x � 10−3–
10−4 which manifests itself in the dip of the splitting func-
tion, only later followed by the increase at very small x.
Also interesting is the fact that the small-x part of the
NNLO DGLAP splitting function matches nearly exactly

Fig. 10. Resummed splitting function zP (z)

with the initial decrease of the resummed splitting func-
tion. The existence of the dip rather than an increase at
values of x∼ 10−4 can have an interesting impact on the
phenomenology.

2.6 The NLO γ� impact factor

One of the most attractive observables to test the BFKL
approach is the total cross section for γ∗γ∗ scattering. To
calculate this observable in the framework of NLO BFKL
the γ∗ impact factor (Φ) at NLO is needed in addition to
the universal BFKL Green function (G); see Fig. 11.
If the NLO BFKL equation is solved in the momentum

space the numerical value of the γ∗ impact factor has to be
known as a function of the reggeon momentum and of the
energy scale.
Besides this, the NLO γ∗ impact factor allows one to

approach the resummation of the next-to-leading log(1/x)
in the quark anomalous dimensions. It also provides the
full information necessary to investigate the color dipole
picture at NLO which, at LO, is one of the important in-
gredients to the QCD evolution based upon the Balitsky–
Kovchegov equation (see Sect. 5 below). At the first small-
x workshop [22] first steps in the calculation of this impact
factor have been presented.
The virtual and the real corrections of the γ∗ impact

factor are calculated from the photon–reggeon vertices
for qq̄ and qq̄g production, respectively. Both vertices are
known [88–91]. What remains to complete the calculation
of the NLO photon impact factor after the infrared diver-
gences of the virtual and of the real parts have been com-
bined [91] are the integrations over the qq̄ and qq̄g phase
space, respectively.
Recently, the phase-space integration in the real cor-

rections have been performed for the case of longitudinal
photon polarization, [92]. The integration over the trans-
verse momenta have been carried out analytically. To this
end the Feynman diagrams were treated separately giving
rise to additional divergences that have been regularized.
As the result, a convergent Feynman parameter integral
has been obtained for each Feynman diagram (or small
groups of them). These results can serve as a starting point
for further analytical investigations, in particular because
the Mellin transform of the real corrections with respect to
the reggeon momentum can be easily obtained.
The remaining integrations in the real corrections (lon-

gitudinal γ∗ polarization) have been carried out numer-

Fig. 11. σγ
∗γ∗

tot in the framework of
BFKL
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Fig. 12. Φ′ at different different values of s0

ically [92]. The result is a function Φreal of two dimension-
less (scaled by the photon virtuality) variables: the reggeon
momentum r2 and the energy scale s0. A physical scatter-
ing amplitude (e.g. for the γ∗γ∗ scattering process) involv-
ing the BFKL Green’s function and the impact factors has
to be invariant under changes of s0. The s0 dependence
of the γ∗ impact factor therefore represents an important
issue. s0 enters the NLO γ

∗ impact factor as a cutoff to ex-
clude that region of the qq̄g phase space where the gluon is
separated in rapidity from the qq̄ pair (LLA). The virtual
corrections are therefore independent of s0 and the inte-
gration of the real corrections alone already allows one to
study the s0 dependence of the NLO γ

∗ impact factor. Let
us define, as part of the full NLO impact factor:

Φ′ = g2Φ(0)+ g4Φreal ,

where g2Φ(0) denotes the LO γ∗ impact factor and g2 =
4παs. Choosing Q

2 = 15GeV2 for the photon virtuality
leads αs(Q

2) = 0.18 or g = 1.5. Figure 12 compares Φ′ to
the LO impact factor as function of r2 at different values of
s0. The real corrections are negative and rather large.More
important, Φ′ becomes, in absolute terms, more significant
for smaller values of s0. This implies that the γ

∗ impact fac-
tor tends to become smaller with decreasing s0. Since a de-
crease of s0 in the energy dependence (

s
s0
)ω will enhance

the scattering amplitude, the combined s0 dependence of
the impact factors and the BFKL Green’s function has to
compensate this growth. The result for the s0 behavior of
the γ∗ impact factor is therefore, at least, consistent with
the general expectation. To check the s0 (in)dependence
of the full scattering amplitude and to compute σγ

∗γ∗ , at
least for longitudinal γ∗ polarization, the phase-space inte-
gration in the virtual corrections is the only piece missing.

3 Applications of k�-factorization

In collinear factorization the transverse momenta of the in-
coming partons are neglected whereas they are included
in k⊥-factorization if the same order in αs of the calcu-
lation is considered. Thus in collinear factorization these

transverse-momentum effects come in as a next-to-leading
order level.
In the following sections we discuss some applications of

k⊥-factorization to describe heavy quark production in pp̄
collisions.

3.1 Heavy quark production at the Tevatron

Heavy quark production in hard collisions of hadrons has
been considered as a clear test of perturbative QCD. Such
processes provide also some of the most important back-
grounds to new physics phenomena at high energies.
Bottom production at the Tevatron in the k⊥-factor-

ization approach was considered earlier in [10, 28, 93–98].
Here we use the k⊥-factorization approach for a more de-
tailed analysis of the experimental data [36, 38, 99–101].
The analysis also covers the azimuthal correlations be-
tween b and b̄ quarks and their decay muons. Some of these
results have been presented earlier in [98, 102–107] (see
also [22, 23]).

3.2 Theoretical framework

In the k⊥-factorization approach, the differential cross sec-
tion for inclusive heavy quark production may be written
as (see [108])

dσ(pp̄→QQ̄X) =
1

16π(x1x2s)2
A
(
x1,q

2
1T, µ

2
)
A
(
x2,q

2
2T, µ

2
)

×
∑
|M |2SHA(g

∗g∗→QQ̄)

× dy1dy2dp
2
2Tdq

2
1Tdq

2
2T

dφ1
2π

dφ2
2π

dφQ
2π
, (27)

where A(x1,q21T, µ
2) and A(x2,q22T, µ

2) are unintegrated
gluon distributions in the proton, q1T, q2T, p2T and φ1,
φ2, φQ are transverse momenta and azimuthal angles of the
initial BFKL gluons and final heavy quark respectively, y1
and y2 are the rapidities of heavy quarks in the pp̄ center
of mass frame.

∑
|M |2SHA(g

∗g∗→QQ̄) is the off mass shell
matrix element, where the symbol

∑
in (27) indicates an

averaging over initial and a summation over the final polar-
ization states. The expression for

∑
|M |2SHA(g

∗g∗→QQ̄)
coincides with the one presented in [11].
In the numerical analysis, we have used the KMS pa-

rameterization [52] for the k⊥ dependent gluon density. It
was obtained from a unified BFKL and DGLAP descrip-
tion of F2 data and includes the so-called consistency con-
straint [17]. The consistency constraint introduces a large
correction to the LO BFKL equation; about 70% of the full
NLO corrections to the BFKL exponent λ are effectively
included in this constraint, as is shown in [17, 109].

3.3 Numerical results

In this section we present the numerical results of our cal-
culations and compare them with B meson production at
D0 [36, 101], CDF [38, 99, 100] and UA1 [110].
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Fig. 13. The b quark transverse momentum distribution (in-
tegrated from pbTmin) at Tevatron conditions presented in the
form of integrated cross sections. The curves correspond to the
k⊥-factorization results with the KMS unintegrated gluon dis-
tribution. Experimental data are from UA1 [110] (a), D0 [36]
(b), and CDF [38, 99] (c)

Besides the choice of the unintegrated gluon distribu-
tion, the results depend on the bottom quark mass, the
factorization scale µ2 and the b quark fragmentation func-
tion. As an example [111], used a special choice of the b
quark fragmentation function, as a way to increase the B
meson cross section in the observable range of transverse
momenta. In the present paper we convert b quarks into
B mesons using the standard Peterson fragmentation func-
tion [112] with ε= 0.006. Regarding the other parameters,
we usemb = 4.75GeV and µ

2 = q2T as in [10, 95].
The results of the calculations are shown in Figs. 13–17.

Figure 13 displays the b quark transverse-momentum dis-

Fig. 14. Theoretical predictions for the B meson pT spectrum
compared to the CDF [100] data. Curve is the same as in Fig. 13

Fig. 15. The cross section for muons from B meson decay
as a function of rapidity compared to the D0 data [101]. The
curves are the same as in Fig. 13

tribution at Tevatron conditions presented in the form of
integrated cross sections. The following cuts were applied:
(a) |y1| < 1.5, |y2| < 1.5,

√
s = 630GeV; (b) |y1|< 1,

√
s =

1800GeV; and (c) |y1| < 1, |y2| < 1,
√
s = 1800GeV. One

can see reasonable agreementwith the experimental data.
Figure 14 shows the prediction for theBmeson pT spec-

trum at
√
s = 1800GeV compared to the CDF data [38]

within the experimental cuts |y| < 1, where also a fair
agreement is found between results obtained in the k⊥-
factorization approach and experimental data.
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Fig. 16. Predictions for the leading muon pT spectrum in the
bb̄ production events compared to the D0 data [36]. The curve
is the same as in Fig. 13

Fig. 17. Azimuthal muon–muon correlations at Tevatron con-
ditions. The curve is the same as in Fig. 13. Experimental data
are from the D0 collaboration [36]

The D0 data include also muons originating from
the semileptonic decays of B mesons. To produce muons
from B mesons in theoretical calculations, we simulate
their semileptonic decay according to the standard elec-
troweak theory. In Fig. 15 we show the rapidity distribu-
tion dσ/d|yµ| for decay muons with pµT > 5 GeV.
Figure 16 shows the leading muon pT spectrum for bb̄

production events compared to the D0 data. The cuts ap-
plied to both muons are given by 4< pµT < 25 GeV, |η

µ|<
0.8 and 6<mµµ < 35 GeV. The leading muon in the event
is defined as the muon with largest pµT-value. In all the
above cases a rather good description of the experimental
measurements is achieved.
It has been pointed out that investigations of bb̄ cor-

relations, such as the azimuthal opening angle between b
and b̄ quarks (or between their decay muons), allow addi-
tional details of the b quark production to be tested, since
these quantities are sensitive to the relative contributions
of the different production mechanisms [10, 28, 93–95,97].
In the collinear approach at LO the gluon–gluon fusion
mechanism gives simply a delta function, δ(∆φbb̄−π), for

the distribution in the azimuthal angle difference ∆φbb̄.
In the k⊥-factorization approach the non-vanishing initial
gluon transverse momenta, q1T and q2T, implies that this
back-to-back quark production kinematics is modified. In
the collinear approximation this effect can only be achieved
if NLO contributions are included.
The differential bb̄ cross section dσ/d∆φµµ is shown

in Fig. 17 (from [108]). The following cuts were applied to
both muons: 4 < pµT < 25GeV, |η

µ| < 0.8 and 6 <mµµ <
35GeV. We note a significant deviation from the pure
back-to-back production, corresponding to ∆φµµ ≈ π.
There is good agreement between the KMS prediction and
the experimental data, which shows that for these correla-
tions the k⊥-factorization scheme with LOmatrix elements
very well reproduces the NLO effects due to the gluon
evolution.

3.4 Quarkonium production

The k⊥-factorization approach has rather successfully de-
scribed the production of open charm and beauty, as dis-
cussed in the previous section, but also hadroproduction
of heavy quarkonium states, J/ψ, χc and Υ mesons, at
the Tevatron are well described [95, 113–115]. In many
cases, however, the data can also be described within
the usual collinear parton model, if the relevant next-to-
leading order QCD corrections are taken into account, or if
the so-called color-octet mechanism is included.
In this context, the theoretical predictions on J/ψ spin

alignment made in [116] are of particular interest, as the
collinear and k⊥-factorization approaches show qualita-
tively different behavior. Note that the k⊥-factorization
approach provides the only known (up to date) explanation
of the J/ψ polarization phenomena observed at the Teva-
tron [117] and at HERA [105].
It would be interesting and important to find other

examples, where the difference between the collinear and
noncollinear approaches would be manifested in a clear
and unambiguous way. In this section we suggest such
a process. We analyze the production of P -wave quarko-
nium states (namely the χc and χb mesons) in high energy
hadronic collisions and demonstrate the dramatic differ-
ence between the different theoretical calculations.
Naively one could expect a difference from the fact that

the production of χ1 states in the 2→ 1 gluon–gluon fu-
sion process is forbidden if the initial gluons are on shell,
but is allowed if the gluons are off-shell. However, the real
situation is complicated by the necessity to take into ac-
count also the 2→ 2 processes. The results of our analysis
are presented in the next subsection.
We begin our discussion with showing the predictions

of the collinear parton model for the production of P -
wave charmonia at Tevatron conditions. The color-singlet
production scheme refers to the 2→ 2 gluon–gluon fusion
sub-process

g+ g→ χ+ g . (28)

(It would be inadequate to rely upon the 2→ 1 sub-process
g+g→ χ in this case, because the final state particle would
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then be produced with zero transverse momentum, and
thus could not be detected experimentally.) The computa-
tional technique is explained in detail elsewhere [118–120].
For the sake of definiteness, we only present the pa-

rameter setting used in our calculations. Throughout the
paper we use the LO GRV set [121] for gluon densities
in the proton, and the value for the χc wave function,
|R′χc(0)|

2 = 0.075GeV5, taken from the potential model
of [122]. The renormalization scale in the strong coup-
ling constant αs(µ

2
R/Λ

2) is set to µ2R =m
2
χ+ p

2
T,χ with

Λ = 200MeV. The integration over the final state phase
space is restricted to the pseudorapidity interval −0.6<
η(χc)< 0.6, in accord with the experimental cuts used by
the CDF collaboration [123–128].
Since in the collinear formalism the predictions based

on the color-singlet mechanism alone are known to be in-
consistent with the data [123–128], the theory has to be
amplified with the so-called color-octet contribution, as it
is commonly assumed in the literature [120]. Unlike the
predictions of the color-singlet model, the size of the color-
octet matrix elements are not calculable within the theory.
Therefore, the corresponding numerical results are always
shown with arbitrary normalizing factors (just chosen to fit
the experimental data when possible).
The numerical predictions of the collinear partonmodel

are summarized in Fig. 18 (upper panel). At relatively low
transverse momenta, the production of χc states is dom-
inated by the color-singlet mechanism. The differential
cross section dσ/dpT diverges when pT→ 0 for χ2 states
(dashed histogram), while it remains finite for χ1 states
(solid histogram). The production of χ1 states at zero pT
is suppressed (in accord with the Landau–Yang theorem),
because in the limit of very soft final state gluons the 2→ 2
gluon–gluon process degenerates into the 2→ 1 process.
The shape of the χ0 spectrum is similar to that of χ2 (up
to an overall normalizing factor), and this spectrum is not
shown in the figure.
The production of χc mesons at high pT is dominated

by the color-octet contribution, which mainly comes from
the ‘gluon fragmentation’ diagrams. Here, the perturbative
production of 3S1 color-octet states,

g+ g→3 S81 + g , (29)

is followed by a non-perturbative emission of soft gluons,
which results in the formation of physical color-singlet χc
mesons:

3S81 →
3 P 1J +ng . (30)

As the co-produced gluons in (30) are assumed to be
soft, the momentum distribution of χc mesons is taken to
be identical to that of the color-octet 3S1 state in (29).
The non-perturbative matrix elements responsible for the
process (30) are related to the fictitious color-octet wave
functions, which are used in calculations based on (29) in
place of the ordinary color-singlet wave function: 〈0|O8|〉=
(9/2π)|R8(0)|2.
It should be noted that the fragmentation of an almost

on-shell transversely polarized gluon into a χ1 state via the

Fig. 18. Theoretical predictions for the production of χc
mesons at Tevatron conditions. Upper : Predictions of the
collinear parton model. Solid histogram, χ1 production via
color-singlet mechanism; dashed histogram, χ2 production via
color-singlet mechanism; the lower and the upper dotted his-
tograms, χ1 and χ2 production via color-octet mechanism,
respectively. Middle: Predictions of the k⊥-factorization ap-
proach. Solid histograms, χ1 production; thin and thick dashed
histograms, χ0 and χ2 production, respectively. The upper and
the lower histograms of each type correspond to the gluon
densities of [129] and [9]. Only the color singlet mechanism is
assumed in all cases. Lower : Predictions on the ratio of the
differential cross sections dσ(χ1)/dσ(χ2). Solid histograms,
k⊥-factorization approach with gluon densities of [129] and [9];
dashed histogram, collinear parton model, color singlet contri-
bution only; dotted histograms, collinear parton model with
both singlet and octet production mechanisms taken into ac-
count. The different curves from top to bottom correspond to
the color-octet χ1/χ2 suppression factor set to 1, 0.3, 0.1 and
0.03, respectively

emission of a single additional gluon, g→3 S81 → χ1+ g, is
suppressed in accord with the Landau–Yang theorem. In
terms of the non-relativistic approximation, it is equivalent
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to say that the formally leading color-electric dipole transi-
tions are forbidden, and one must go to nonleading higher
multipoles. As the degree of this suppression is not calcu-
lable within the color-octet model on its own, we rather
arbitrarily set the suppression factor to 1/20, which cor-
responds to potential model expectations for the average
value of v2.
We now proceed with showing the results obtained in

the k⊥-factorization approach. In this case the produc-
tion of charmonium χc states can be successfully described
within the color-singlet model alone [117], or with only
a minor admixture of color-octet contributions [95]. The
consideration is based on the 2→ 1 partonic sub-process

g+ g→ χ , (31)

which represents the true leading order in perturbation
theory. The non-zero transverse momentum of the final
state meson comes from the momenta of the initial gluons.
The computational technique, which we are using here, is
identical to the one described in detail in [117]1.
In order to estimate the degree of theoretical uncer-

tainty connected with the choice of unintegrated gluon
density, we also use the prescription proposed in [9]. In
this approach, the unintegrated gluon density is derived
from the ordinary density G(x, q2) by differentiating it
with respect to q2 and setting q2 = k2⊥. Among the different
parameterizations available on the present-day theoretical
market, this approach shows the largest difference with
Blümlein’s density [129]. Thus, these two-gluon densities
can represent a theoretical uncertainty band.
The numerical results are exhibited in Fig. 18 (middle

panel). In contrast with the collinear partonmodel, the dif-
ferential cross sections are no longer divergent, even at very
low pT values. This property emerges from the fact that the
relevant 2→ 1 matrix elements are always finite. One can
see that the production of the χ1 state (solid histogram) at
low pT is strongly suppressed (in comparison with the χ0
and χ2 states, short and long dashed histograms) because
the initial gluons are almost on-shell. The suppression goes
away at higher pT, as the off-shellness of the initial gluons
becomes larger.
In Fig. 18 (lower panel) we compare the predictions of

the collinear and k⊥-factorization approaches by showing
the ratio of the differential cross sections dσ(χc1)/dpT and
dσ(χc2)/dpT plotted as a function of pT. As long as the
ratio of the non-perturbative color-octet matrix elements,
O(3S81 → χ1)/O(

3S81 → χ2), is unknown, the predictions of
the collinear parton model are very uncertain. The differ-
ent dotted curves in Fig. 18 from top to bottom correspond
to the color-octet χ1/χ2 suppression factor set to 1, 0.3,
0.1, and 0.03, respectively. The band between the two low-
est histograms may be considered as the most realistic
case. The predictions of the collinear and k⊥-factorization
approaches clearly differ from each other in their absolute
values, and show just the opposite trend in the experimen-
tally accessible region (pT > 5 GeV).

1 We use the FORTRAN code developed in [117]. This code is
public and is available from the author on request.

We conclude our discussion with showing the pre-
dictions for the bottomonium states. The calculations
are performed with the parameter setting given above,
and with the value of the χb wave function set equal to
|R′χb(0)|

2 = 1.4 GeV5 [130]. The integration over the final
state phase space is now restricted to the pseudorapidity
interval −0.4< η(χb) < 0.4, in accord with the CDF ex-
perimental cuts [123–128].
Our numerical results are displayed in Fig. 19. The

qualitative features of the differential cross sections are
similar to the ones, which we have seen in the case of
charmonium. It is worth recalling that the production
of Υ mesons has been already measured by the CDF
collaboration [123–128] at pT-values close to zero. Al-
though the pT dependence of the direct (p̄p→ ΥX) and
indirect (p̄p→ χbX → ΥγX) contributions have not been
studied separately, the net result seems to be at odds
with collinear calculations. In fact, the predicted magni-
tude of the indirect contribution coming from the decays
of χb2 states at pT < 2 GeV exceeds the total measured Υ

Fig. 19. Theoretical predictions on the production of χb. The
notation is the same as in Fig. 18
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production rate in this region. In contrast the measured
differential cross section dσ(Υ )/dpT decreases with de-
creasing pT, in perfect agreement with the k⊥-factorization
predictions [117].
In summary, one major difference between the collinear

and the k⊥-factorization approaches is connected with
the behavior of the differential cross section dσ(χ2)/dpT
at low transverse momenta. This quantity remains finite
in the k⊥-factorization approach, while it diverges in the
collinear parton model when pT goes to zero. The latter
prediction seems to be not supported by the available ex-
perimental data on the bottomonium production at the
Tevatron.
Another well pronounced difference refers to the ratio

between the production rates dσ(χ1)/dσ(χ2). The under-
lying physics is connected with the off-shellness of the glu-
ons. In the collinear parton model the relative suppression
of χ1 states becomes stronger with increasing pT because
of the increasing role of the color-octet contribution. In
this approach the leading-order fragmentation of an on-
shell transversely polarized gluon into a vector meson is
forbidden. In contrast with that, in the k⊥-factorization
approach the increase in the final state pT is only due to
the increasing transversemomenta (and corresponding vir-
tualities) of the initial gluons, and consequently the sup-
pression motivated by the Landau–Yang theorem becomes
weaker at large pT.
In conclusion we see that quarkonium production can

be regarded as a direct probe of the gluon virtuality and
provides a direct test of the need for a noncollinear parton
evolution. Our results seem especially promising in view of
the fact that the difference between the two theoretical ap-
proaches is clearly pronounced at conditions accessible for
direct experimental measurements.

4 BFKL dynamics in jet-physics

It has been generally taught that QCD dynamics in high
energy scattering and in jet-physics are quite different.
However it has been recently shown [131] that classes of jet
observables satisfy equations formally similar to the ones
for the high energy S-matrix. The jet-physics observable
here discussed are the heavy quark–antiquark multiplicity
(in a certain phase-space region) and the distribution in
the energy emitted away from jets. They satisfy equations
formally similar to BFKL and Kovchegov equations re-
spectively. One may expect that by exploiting such a for-
mal similarity will bring new insights in both fields.
The common key feature shared by the observables in

these two cases is that enhanced logarithms come only
from infrared singularities (no collinear singularities). The
differences between the two cases is in the relevant phase
space for multi-soft gluon ensemble. For the S-matrix all
transverse momenta of intermediate soft gluons are of com-
parable order (no collinear singularities in transverse mo-
menta). For the considered jet observables all angles of
emitted soft gluons are of comparable order (no collinear
singularities in emission angles).

We discuss first the QQ̄ (heavy quark–antiquark)
multiplicity in the phase-space region where collinear sin-
gularities cancel and then the distribution in the energy
emitted away from jets.

4.1 QQ̄ multiplicity and BFKL equation

The standardmultiplicity in hard events has both collinear
and infrared enhanced logarithms which are resummed by
the well-known expression [132, 133].

lnN(Q)∼

∫ Q
Q0

dkt
kt

√
2ᾱs(Q) , ᾱs =

Ncαs

π
. (32)

The QQ̄ multiplicity introduced and studied in [131] is,
due to the peculiar phase-space region chosen, without
collinear singularities. In e+e− with center-of-mass energy
Q one considers the emission of a QQ̄ system of massM
and momentum k. In the calculation one takes small vel-
ocity v = |k|/Ek so that there are no collinear singularities;
one considers Q�M so that perturbative coefficients are
enhanced by powers of lnQ/M, and one studies the pro-
cess near threshold. In this region, the leading-logarithmic
contributions (αns ln

nQ/M) are obtained by considering
soft secondary gluons q1, · · · qn emitted off pp̄, the primary
quark–antiquark. TheQQ̄ system, originating from the de-
cay of one of these soft gluons, actually the softest one, we
denote by k,

e+e−→ pp̄+ q1 . . . qnk , k→QQ̄ . (33)

As shown in [131], to leading-logarithmic order, the QQ̄
multiplicity distribution factorizes into the inclusive distri-
bution I for the emission of the soft off-shell gluon of mass
M and momentum |k| and the distribution for its succes-
sive decay into the QQ̄ system,

Ek dN

dM2d|k|
=
α2s CF

3π2M2

√
M2−4M2

M2

M2+2M2

M2
I , (34)

whereM is the heavy quark mass. The Born distribution is

I(0) = v2
∫
dΩk
4π
wab(k)

wab(k) =
(ab)

(ak)(kb)

=
(1− cos θab)

(1− v cos θak)(1− v cos θkb)
, (35)

with wab(k) the (angular part of the) distribution for the
off soft gluon emitted off the ab-dipole (for e+e− in center
of mass θab = π). For v<1 the Born contribution is finite.
For Q�M, secondary radiation contributes. Since

the Born contribution is regular, only soft logarithms
(αns ln

nQ/M) are generated which need to be resummed
by a recurrence relation. To understand the structure of
the resulting equation and appreciate the similarity with
the BFKL equation we consider the first non-trivial con-
tribution in which, besides the off-shell soft gluon k, there
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is an additional massless soft gluon either emitted or
virtual.
The real emission contribution is given by

wRab(k; q) =
(ab)

(aq)(qk)(kb)
+

(ab)

(ak)(kq)(qb)

=Θ(q−k)wab(q)[waq(k)+wqb(k)]

+Θ(k− q)wab(k)[wak(q)+wkb(q)] , (36)

where, for massless q,

wab(q) =
(ab)

(aq)(qb)
=

1− cosθab
(1− cosθaq)(1− cos θqb)

. (37)

The corresponding virtual correction is obtained by inte-
grating over the massless momentum q in the expression
(softest gluon emitted off external legs):

wVab(k; q) =−Θ(q−k)wab(q) ·wab(k)

−Θ(k− q)wab(k)[wak(q)+wkb(q)] . (38)

By summing the two contributions one finds

wR+Vab (k; q) =Θ(q−k)wab(q)

× [waq(k)+wqb(k)−wab(k)] , (39)

which shows that k is the softest gluon. From this we derive
the first iterative structure giving I(1) in terms of the Born
contribution (35)

I(1)(ρab, τ) =

∫ Q
M

dqt
qt
ᾱs(qt)

∫
dΩq
4π
wab(q)

×
[
I(0)(ρaq)+ I

(0)(ρqb)− I
(0)(ρab)

]

×ρij =
1− cos θij
2

, (40)

with

τ =

∫ Q
M

dqt
qt
ᾱs(qt) =

2N2c
11Nc−2nf

ln

(
lnQ/Λ

lnM/Λ

)
. (41)

Here the running coupling in qt is restored so τ is given by
an expansion in αs(Q) lnQ/M. The measure in (40) is the
branching distribution for a massless soft gluon q emitted
off the ab-dipole. One generalizes this branching structure
as successive dipole emission of softer and softer gluons and
one deduces [131]

∂τI(ρab, τ) =∫
dΩq
4π
wab(q)

[
I(ρaq, τ)+ I(ρqb, τ)− I(ρab, τ)

]
.

(42)

This recurrence structure is very similar to the one ob-
tained in the dipole formulation of the BFKL equa-
tion [134–136]. The fundamental difference is that here the
inclusive distribution I depends on the angular variable ρ
(with the limitation ρ < 1), while in the high energy scat-
tering one deals with the S-matrix as a function of the
impact parameter b (which is not bounded).

The similarity with the BFKL equation can be made
even more evident if one performs the azimuthal integra-
tion. One obtains [131]

∂τI(ρ, τ) =

∫ 1
0

dη

1−η

(
η−1I(ηρ, τ)− I(ρ, τ)

)

+

∫ 1
ρ

dη

1−η

(
I(η−1ρ, τ)− I(ρ, τ)

)
. (43)

The lower limit η > ρ in the second integral ensures that
the argument of I(ρ/η, τ) remains within the physical re-
gion ρ/η < 1. The presence of this lower bound is the only
formal difference with respect to the BFKL equation for
the high energy elastic amplitude T in the impact param-
eter representation

∂τT (ρ, τ) =

∫ 1
0

dη

1−η

(
η−1T (ηρ, τ)−T (ρ, τ)

)

+

∫ 1
0

dη

1−η

(
T (η−1ρ, τ)−T (ρ, τ)

)
. (44)

Here ρ= b2 is the square of the impact parameter and τ =
ᾱs Y with Y the rapidity with the QCD coupling fixed. We
discuss now the differences in the two solutions.
Recall first the solution for the high energy scattering

case. Since b has no infrared bound we change the variable,

b2 = e−x , −∞< x <∞ . (45)

The BFKL equation (44) satisfies translation invariance
and the area conservation law

∂τ

∫ ∞
−∞
dxd1/2x T (e−x, τ) e−4 ln 2τ = 0 .

This allows us to obtain the solution and then its asymp-
totic behavior (usingD = 28ζ(3) = 33.6576 . . . ):

T (b, τ) =

∫ ∞
−∞

dk

2π
T̃ (k)e(ik−1/2)xeχ(k)τ

� T̃ (0)
e4 ln 2 τ e−1/2xe−

x2

2Dτ

√
2πDτ

, (46)

with T̃ determined by the initial condition and χ(k) =
2ψ(1)−ψ(1/2+ k)−ψ(1/2−k) the BFKL characteristic
function.
In the QQ̄ multiplicity case, the crucial difference is

that the angular variable ρ is bounded. Introducing the
x-variable as in (45) one observes that translation invari-
ance is lost and, instead of area conservation, one has ab-
sorption:

ρ=
1− cosθ

2
= e−x , 0< x <∞ ,

∂τ

∫ ∞
0

dxe1/2xI(e−x, τ)e−4 ln 2τ < 0 .
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Fig. 20. Plot of φ(x, τ ) = e−
1
2xe−4 ln 2τ I(e−x, τ ) solution of

(43) with initial condition I(ρ, 0) = 12ρ

The exact solution of (43) was obtained in [137]:

I(ρ, τ) =

∫ ∞
0

dkĨ(k)P−1/2+ik

(
2−ρ

ρ

)
eχ(k)τ

∼
(x+x0)e

4 ln 2τ e−1/2xe−
x2

2Dτ

τ
√
2πDτ

, (47)

with Pα(z) the Legendre function (well known in Regge
theory) and Ĩ given by initial condition.
From (47) and from the upper plot of Fig. 20, one sees

that the inclusive distribution vanishes at the non-physical
point x=−x0 which is slowly varying with τ . The asymp-
totic shape is developed already at relatively small τ . At
x= 0, corresponding to the physical value ρ= 1 for e+e−

in center of mass, the function φ(x, τ) is decreasing; how-
ever, thanks to the e4 ln 2τ factor the inclusive distribu-

Fig. 21. Schematic diagram defining the “out” region in (48)

tion I(ρ = 1, τ) is increasing, as shown in the lower plot
of Fig. 20.

4.2 Away-from-jet energy flow in e+e�

Consider in e+e− annihilation the distribution in the en-
ergy emitted outside a cone around the jets, Eout (Fig. 21):

Σe+e−(Eout) =
∑
n

∫
dσn
σT
Θ

(
Eout−

∑
out

qti

)
. (48)

This is the simplest (in principle) observable involving
non-global single logarithms which were (re)discovered by
Dasgupta and Salam [138–141]. These enter all jet-shape
observables which involve only a part of phase space and
therefore are present in a number of distributions such
as the Sterman–Weinberg distribution (energy in a cone);
photon isolation; away-from-jet radiation; rapidity cuts in
hadron–hadron (e.g. pedestal); DIS jet in current hemi-
sphere. As for the observable previously discussed, these
non-global logs originate from multiple soft gluon emis-
sions at large angles (i.e. not in collinear configuration).
Σe+e−(Eout) contains only single logarithms (α

n
s ln

nQ/
Eout) coming from soft singularities so that σn/σT can
be taken as the distribution in the number of soft gluons
emitted off the primary pp̄ quark–antiquark pair which is
known [142] in the large Nc limit. Σe+e−(Eout) was first
studied [138–141] numerically by a Monte Carlo method
and then studied [143] analytically by deriving the follow-
ing evolution equation:

∂τΣab =−(∂τRab)Σab+

∫
in

dΩq
4π
wab(q) [ΣaqΣqb−Σab] ,

Rab = τ

∫
out

dΩq
4π
wab(q) , (49)

where τ is the single logarithmic variable previously intro-
duced (41). As before, to set up a recurrence relation, one
needs to generalize the problem by introducing distribu-
tion Σab =Σab(Eout) for the emission off ab-dipole form-
ing an angle θab. The physical distribution Σe+e−(Eout)
for e+e− in the center of mass is obtained by setting
θab = π.
As shown in (49), the dipole directions a and b are al-

ways inside the jet region (q in the integral is bounded
inside the jet region). If a, b are in opposite semicones,
then either a, q or q, b are in the same semicone. There
are many properties of this jet-physics equation [138–141,
143]. What concerns us here as far as the connection with
high energy physics is involved is the case in which a, b are
in the same semicone and we consider a very close to b. In
the small angle limit we introduce the 2-dimensional vari-
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able θ for the ab-dipole (Σab→ Σ(θ)). For small θ we can
neglect the linear term (Rab ∼ θ2) so that the evolution
equation (49) becomes

∂τΣ(τ, θ) =

∫
d2θ′

2π

θ2

θ′2(θ− θ′)2

×
[
Σ(τ, θ′)Σ(τ, θ− θ′)−Σ(τ, θ)

]
, (50)

with θ′ ranging in the full plane. The initial condition
is Σ(0, θ) = 1. This equation is formally the same as the
Kovchegov equation [144] for the S-matrix

∂τS(τ,b) =

∫
d2b′

2π

b2

b′2(b−b′)2

×
[
S(τ,b′)S(τ,b−b′)−S(τ,b)

]
, (51)

where b is the impact parameter ranging in the full
plane and τ = ᾱsY as before. Here the initial condition
is 1−S(0,b)∼ α2s corresponding to the case of two-gluon
exchange.
The asymptotic properties of the solutions are well

known. Both solutions undergo well-known saturation for
the variable θ2 or b2 larger than a critical value with
asymptotic behavior e−cτ with c � 4.88 · · · determined
from the BFKL characteristic function. Beyond such a crit-
ical value the solution decreases in τ as a Gaussian,
Σ ∼ S ∼ e−cτ

2/2.
The difference in the initial condition makes a difference

in the way the saturation regime is asymptotically reached
in the two cases. In the high energy case (1−S(0,b)∼ α2s )
the saturation regime is reached after a critical time τc ∼
lnα−2s /4 ln 2. In the jet-physics case (Σ(0, θ) = 1) there is
not a critical τ and the solution goes without impediment
into the saturation regime.
In addition to the different initial conditions, an im-

portant difference is that the variables in (49) are angular
variables ranging in compact regions. We have seen in the
previous analysis that even at small angle it is not fully cor-
rect to neglect the compactness affecting the integration
limits. This question will be further studied [145].

4.3 Physics differences

The basis for the two classes of equations, (43) and (49) in
jet-physics and (44) and (51) in high energy scattering, is
of course the (same) multi-soft gluon distribution. However
the dominant contributions for the two classes of observ-
ables (Iab, Σab and T, S) are obtained from very different
kinematical configurations as we discuss now.

Jet-physics case

Here all angles θi of emitted gluons are of same order.
This is due to the fact that this observable does not con-
tain collinear singularities for θij → 0. Moreover, in the
(leading) infrared limit soft gluon energies can be taken
ordered so that also the emitted transverse momenta qti

are ordered. The ordered variables qti enter the argument
of the running coupling. The distribution Iab or Σab are
functions of the angular variable θab (which ranges in
a compact region) and τ , the logarithmic integral of the
running coupling in (41). We are then interested in the so-
lution for finite θab (e.g. θab = π in e

+e− center of mass)
and for τ never too large.

High-energy scattering case

Here all intermediate soft gluon transverse momenta qti
are of same order (no singularities for vanishing transverse-
momentum differences). On the other hand, energy order-
ing implies in this case that intermediate gluon angles θi
are ordered. Contrary to the previous case, the running
coupling is a function of the variables qti which all are of
same order. Therefore, in first approximation, one can take
αs fixed. The high energy S- matrix is a function of the
impact parameter (which has no bound at large b) and
τ = ᾱs Y . In this case we are then interested in the solution
for small ρ (the short distance region) and for τ large.
As discussed in Sect. 4.1, the fact that the variable ρ en-

tering the jet observable ranges in a compact region affects
the prefactor of the asymptotic behavior and the shape of
the distribution at finite angles. In the non linear case dis-
cussed in Sect. 4.2, even neglecting compactness at small
angle, the difference in the initial conditions affects the
ranges in τ at which the asymptotic behavior (saturation)
is developing.
Concluding, by exploiting similarities and differences

in the dynamics of high energy scattering and jet-physics
(with non-global logs) one hopes that new insights in both
fields could be developed.

5 Saturation

A parton evolution equation which attempts to describe
saturation phenomena was originally proposed by Gri-
bov, Levin and Ryskin [9] (GLR equation) in momentum
space and proven in the double log approximation of per-
turbative QCD by Mueller and Qiu [146]. In the leading
ln 1/x approximation it was derived by Balitsky in theWil-
son loop operator expansion [147]. In the form presented
later it was obtained by Kovchegov [144] (now called the
Balitsky–Kovchegov or BK equation) in the color dipole
approach [134] to high energy scattering in QCD. This
equation was also obtained by summation of the BFKL
pomeron fan diagrams by Braun [148] and most recently
Bartels, Lipatov, and Vacca [149]. In the framework of
color glass condensate it was obtained by Iancu, Leonidov
and McLerran [150].

5.1 Basic facts about the BK equation

Because the transverse coordinates are unchanged in
a high energy collision, unitarity constraints are gener-
ally more easy to take into account in a formalism based
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on the transverse coordinate space representation, and
several suggestions for how to include saturation effects
in such a formalism have been proposed. Golec-Biernat
and Wüsthoff [151] formulated a dipole model, in which
a virtual photon is treated as a qq̄ or qq̄g system im-
pinging on a proton, and this approach has been further
developed by several authors (see e.g. [152] and [153]).
Mueller [134, 135, 154] has formulated a dipole cascade
model in transverse coordinate space, which reproduces
the BFKL equation, and in which it is also possible to ac-
count for multiple sub-collisions. Within this formalism
Balitsky and Kovchegov [144, 147] have derived a non-
linear evolution equation (BK equation), which also takes
into account these saturation effects from multi-pomeron
exchange and which is the best presently available tool to
study saturation phenomena at high energies. Contrary to
many models the BK equation has solid grounds in pertur-
bative QCD. The equation reads

dN(x01, y; b)

dy
=
Ncαs

2π

∫
ρ

d2x2
x201
x202x

2
12

×

(
2N

(
x02, y;b−

1

2
x12

)
−N(x01, y;b)

−N

(
x02, y;b−

1

2
x12

)
N(x12, y;b−

1

2
x02)

)
.

(52)

The function N(r⊥, x; b) is the imaginary part of the am-
plitude for a dipole of size r⊥ elastically scattered at an
impact parameter b.
In the (52), the rapidity y ≡− lnx. The ultraviolet cut-

off ρ is needed to regularize the integral, but it does not
appear in physical quantities. We also use the large Nc
limit (number of colors) value of CF =Nc/2.
Equation (52) has a very simple meaning: The dipole of

size x01 decays in two dipoles of sizes x12 and x02 with the

decay probability given by the wave function |Ψ |2 =
x201
x202x

2
12
.

These two dipoles then interact with the target. The non-
linear term takes into account a simultaneous interaction
of two produced dipoles with the target. The linear part
of (52) is the LO BFKL equation [7, 8], which describes the
evolution of the multiplicity of the fixed size color dipoles
with respect to the energy y. For the discussion below we
introduce a short notation for (52):

dN

dy
= αsKer⊗ (N−NN) . (53)

The BK equation has been studied both analytically [155–
161] and numerically [148, 162–169]. The theoretical suc-
cess associated with the BK equation is based on the fol-
lowing facts.

– The BK equation is based on the correct high energy
dynamics which is taken into account via the LO BFKL
evolution kernel.
– The BK equation restores the s-channel unitarity of
partial waves (fixed impact parameter) which is badly
violated by the linear BFKL evolution.

– The BK equation describes gluon saturation, a phe-
nomenon expected at high energies.
– The BK equation resolves the infrared diffusion prob-
lem associated with the linear BFKL evolution. This
means that the equation is much more stable with
respect to possible corrections coming from the non-
perturbative domain.
– The BK equation has met with phenomenological
successes when confronted against DIS data from
HERA [162, 165, 170–176].

The BK equation is not exact and has been derived in
several approximations.

– The LO BFKL kernel is obtained in the leading soft
gluon emission approximation and at fixed αs.
– The large Nc limit is used in order to express the non-
linear term as a product of two functions N . This limit
is in the foundation of the color dipole picture. To
a large extent the largeNc limit is equivalent to a mean
field theory without dipole correlations.
– The BK equation assumes no target correlations. Con-
trary to the large Nc limit, which is a controllable ap-
proximation within perturbative QCD, the absence of
target correlations is of pure non-perturbative nature.
This assumption is motivated for asymptotically heavy
nuclei, but it is likely not to be valid for proton or real-
istic nucleus targets.

There are several quite serious theoretical problems
which need to be resolved in the future.

– The BK equation is not symmetric with respect to
target and projectile. While the latter is assumed to
be small and perturbative, the former is treated as
a large non-perturbative object. The fan structure of
the diagrams summed by the BK equation violates the
t-channel unitarity. The t-channel unitarity is a com-
pleteness relation in the t-crossing channel. It basically
reflects a projectile–target symmetry of the Feynman
diagrams. The down-type fan graphs summed by the
BK equation, obviously violate the symmetry. A first
step towards restoration of the t-channel unitarity
would be an inclusion of pomeron loops.
– Though the BK equation respects the s-channel uni-
tarity2 the exchange of massless gluons implies that
it violates the Froissart bound for the energy depen-
dence of the total cross section. In order to respect the
Froissart bound, gluon saturation and confinement are
needed. On one hand, the BK equation provides gluon
saturation at fixed and large impact parameters. On the
other hand, being purely perturbative, it cannot gener-
ate the mass gap needed to ensure a fast convergence
of the integration over the impact parameter b. Because
of this problem, up to now all the phenomenological
applications of the BK equation were based on model
assumptions regarding the b dependence. It is always
assumed that the b dependence factorizes and in prac-
tice the BK equation is usually solved without any trace
of b. At the end, the b dependence is restored via an

2 There was a recent claim of Mueller and Shoshi [177] that
the s-channel unitarity is in fact violated during the evolution.
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ansatz with a typically exponential or Gaussian profile.
An attempt to go beyond this approximation has been
reported in [167, 168].
– It is very desirable to go beyond the BK equation and
relax all underlying assumptions outlined above. The
higher order corrections are most needed. In particu-
lar it is important to learn how to include the running
of αs, though in the phenomenological applications the
running of αs is usually implemented.
– The LO BFKL kernel does not have the correct short
distance limit responsible for the Bjorken scaling vi-
olation. As a result the BK equation does not natu-
rally match with the DGLAP equation. Though sev-
eral approaches for unification of the BK equation
and DGLAP equations were proposed [52, 162, 165,
178, 179], the methods are not fully developed. All ap-
proaches deal only with low x and only with the gluon
sector.We would like to have a unified evolution scheme
for both small and large x and with quarks included.

5.2 Phenomenology with the BK equation

The deep inelastic structure function F2 is related to the
dipole amplitude N via

F2(x,Q
2) =

Q2

4π2

∫
d2r⊥

∫
dzP γ

∗
(Q2; r⊥, z)σdipole(r⊥, x) ,

(54)

with the dipole cross section given by the integration over
the impact parameter:

σdipole(r⊥, x) = 2

∫
d2bN(r⊥, x; b) . (55)

The physical interpretation of (54) is transparent. It de-
scribes the two stages of DIS [180]. The first stage is the
decay of a virtual photon into a colorless dipole (qq̄-pair).
The probability of this decay is given by P γ

∗
known from

QED [134, 181–183]. The second stage is the interaction
of the dipole with the target (σdipole in (54)). In the large
Nc limit a color charge has a well-defined anti-charge part-
ner in a color dipole. Equation (54) illustrates the fact that
in this limit these color dipoles are the relevant degrees of
freedom in QCD at high energies [134].
For the phenomenological applications one may use

the function N(r⊥, x; b) or σdipole(r⊥, x) obtained directly
from the solutions of the BK equation (52). With addi-
tional DGLAP corrections this approach was adopted by
Gotsman et al. in [162].
Alternatively one can relate N to an unintegrated

gluon-distribution function F(x, k2) = f(x, k2)/k2. The
dipole cross section can be expressed via f [184, 185]:

σdipole(r⊥, x)

=
8π2

Nc

∫
dk2

k4
[1−J0(kr⊥)]αs(k

2)f(x, k2) . (56)

The inversion of (56) is straightforward

f(x, k2) =

∫
d2bh(k2, x, b) , (57)

h(k2, x, b) =
Nc

4αsπ2
k4∆kÑ(k

2, x, b)

=
Nc

αsπ2
k2∂2

∂(ln k2)2
Ñ(k2, x, b) . (58)

Here ∆k is the 2-dimensional Laplace operator. The func-
tion Ñ is related to the Fourier transform of N :

Ñ(k2, x, b) =

∫
d2r⊥
2πr2⊥

eikr⊥N(r⊥, x, b) . (59)

In fact, Ñ obeys a non-linear version of the LO BFKL evo-
lution equation in momentum space. The function Ñ can
be interpreted as an unintegrated gluon distribution. Ñ
and h coincide at large momenta but differ at small ones.
On one hand, within the dipole picture it is rather the func-
tion Ñ which gives the probability to find a gluon with
a given transverse momentum and at a given impact pa-
rameter. On the other hand, it is the function f (or h)
which enters the k⊥ (high energy) factorization formula. In
what follows we will concentrate on the unintegrated gluon
distribution f only.
Instead of solving the BK equation (52) and then in-

verting the relation (56) one can adopt another strategy
and reformulate the problem directly in terms of the un-
integrated gluon density f . This approach was adopted in
work by Kutak–Kwiecinski [179] and Kutak–Stasto [186].
Using relations (55) and (56) one can transform (52) into
an equation for the unintegrated gluon distribution

f(x, k2) = f̃ (0)(x, k2)

+
Ncαs(k

2)

π
k2
∫ 1
x

dz

z

∫
k20

dk
′2

k
′2

×

{
f
(
x
z
, k′2
)
−f
(
x
z
, k2
)

|k′2−k2|
+
f
(
x
z
, k2
)

|4k′4+k4|
1
2

}

−

(
1−k2

d

dk2

)2
k2

R2

∫ 1
x

dz

z

×

[∫ ∞
k2
dk′2k′4αs(k

′2) ln
(
k′2k2

)
f(z, k′2)

]2
.

(60)

Here it is written as an integral equation, corresponding to
the BFKL equation in momentum space supplemented by
the negative non-linear term. The input f̃ (0)(x, k2) is given
at the scale k20 = 1GeV

2. This equation was derived under
the following factorization ansatz:

Ñ(k2, x, b) = ñ(k2, l, x)S(b) , (61)

with normalization conditions on the profile function S(b)
∫
d2bS(b) = 1 ;

∫
d2bS2(b) =

1

πR2
. (62)
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Fig. 22. The unintegrated gluon distribution f(x, k2) as
a function of x for different values k2 = 1.5 GeV2 (top) and
k2 = 30 GeV2 (bottom). Solid lines correspond to the solution
of the nonlinear equation using GLLM [162] parameterization
whereas dashed lines (KKS) correspond to the approximate so-
lution of (65) [179, 186]. For reference we also present linear
BFKL/DGLAP evolution (KMS) [52]

The assumption (61) is crude and corresponds to a situ-
ation where the projectile size (color dipole) is neglected
compared to the target size (proton). A simple way to
improve (60) is to implement NLO corrections in the lin-
ear term of the equation. It can be done within the uni-
fied BFKL-DGLAP framework which is presented below.
The final equation, (65), can be used for phenomenological
applications. Figures 22 and 23 display the unintegrated
gluon distributions f obtained in [162, 186].

5.3 The saturation scale

In order to quantify the strength of effects that slow down
the gluon evolution one introduces the saturation scale
Qs(x). It divides the (x, k

2)-space into regions of dilute
and dense partonic systems. In the case when k2 <Q2s (x)
the solution of the BK equation exhibits geometrical scal-
ing, which means that it depends on one variable only,
N(r, x) = N(rQs(x)) or in momentum space Ñ(k

2, x) =
Ñ(k/Qs(x)). In Fig. 24 we present saturation scales ob-
tained from (59) in [186] and the corresponding result ob-
tained from [162]. Note, however, that the saturation scale
is defined differently in these two approaches. In [186] the
saturation scale is defined quantitatively as a relative dif-
ference between the solutions to the linear and non-linear

Fig. 23. The unintegrated gluon distribution f(x, k2) as
a function of k2 for different values x = 10−4 (left) and
x= 10−5 (right). The lines are the same as in Fig. 22

equations, while in [162] it is defined by the requirement
that N(2/Qs, x) is constant equal to 1/2 or 1/e. Note that
both the KKS [186] and the GLLM models predict a sat-
uration scale much bigger than the one from the GBW
model.

Fig. 24. Saturation scale from various models. The solid lines
defines a band of possible saturation scales coming from the
GLLM model [162]. The dashed line (KKS) is from [186]. The
dotted line (GBW) is the Golec-Biernat–Wüsthoff model [151]
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5.4 Beyond the BK equation

Saturation effects are most easily studied in the coordinate
space representation in which it has been difficult to in-
clude non-leading effects, and the non-leading effects have
mainly been studied in momentum space, where it is hard
to include saturation. We now present a short (not com-
plete) review of recent theoretical activities which attempt
to go beyond the leading-order BK equation. An important
issue relating to the NLO corrections is energy-momentum
conservation, which was already addressed in Sect. 2.2 and
will be further discussed in more detail in Sect. 5.5.

5.4.1 Beyond leading order

The BFKL kernel is known at next-to-leading order. Nev-
ertheless, a non-linear equation at NLO has not been de-
rived yet. Balitsky and Belitsky [187] have been able to
compute a single NLO contribution which has maximal
non-linearity, namely the N3 term:

dN

dy
= αsKer⊗ (N −N ·N)−α

2
sKer⊗N ·N ·N . (63)

The new kernel Ker can be found in [187]. Triantafyllopou-
los [188] has considered NLO BFKL in the presence of
a saturation boundary. The results show a decrease in the
saturation scale growth as a function of rapidity towards
the value λ� 0.3 observed experimentally (GBW [151] and
GLLM [162] models).
Another approach [178, 179] to partially include the

NLO corrections into the BK equation is to implement in
the linear term of (60) the unified BFKL-DGLAP frame-
work developed in [52]. In this scheme the BFKL kernel
also gets modified by the consistency constraint [17, 24,
189]

k
′2 < k2/z . (64)

The origin of this constraint is the requirement that the
virtuality of the exchanged gluon is dominated by its trans-
verse momentum |k′2| � k′2T (see also Sect. 2.2). The con-
straint (64) resums a large part of the subleading correc-
tions in ln 1/x, and it is also connected to the conserva-
tion of the negative light cone component p− = E− pL
(cf. Sect. 5.5). Additionally, the non-singular part of the
leading-order DGLAP splitting function, which influences
the normalization of the unintegrated gluon distribution, is
included into the evolution and αs is assumed to run with
the scale k2 . The final improved non-linear equation for
the unintegrated gluon density becomes

f(x, k2) = f̃ (0)(x, k2)

+
Ncαs(k

2)

π
k2
∫ 1
x

dz

z

∫
k20

dk
′2

k
′2

×

⎧⎨
⎩
f
(
x
z , k

′2
)
Θ
(
k2

z −k
′2
)
−f
(
x
z , k

2
)

|k′2−k2|
+
f
(
x
z , k

2
)

|4k′4+k4|
1
2

⎫⎬
⎭

+
αs(k

2)

2π

∫ 1
x

dzP̄gg(z)

∫ k2
k20

dk′2

k′2
f
(x
z
, k
′2
)

−

(
1−k2

d

dk2

)2
k2

R2

∫ 1
x

dz

z

×

[∫ ∞
k2

dk′2

k′4
αs(k

′2) ln

(
k′2

k2

)
f(z, k′2)

]2
, (65)

with the input distribution f̃ (0)(x, k2).

5.4.2 JIMWLK

The Nc corrections can be accounted for through the
JIMWLK functional equation [190–194], which is equiva-
lent to Balitsky’s original infinite chain of equations [147].
Introducing N as a target expectation value of a certain
operator (product of two Wilson lines),N ≡ 〈W 〉target, the
first couple of equations of the Balitsky chain are

d〈W 〉

dy
= αsKer⊗ (〈W 〉− 〈WW 〉) , (66)

d〈WW 〉

dy
= αsKer⊗ (〈WW 〉− 〈WWW 〉) . (67)

The large Nc limit and the absence of the target corre-
lations used by Kovchegov [144] is equivalent to a mean
field approximation which allows to express a correlator of
a product as a product of correlators:

〈WW 〉= 〈W 〉〈W 〉 =NN ;Nc→∞ .

Thus the first equation of the Balitsky chain closes to the
BK equation.
Rummukainen and Weigert [166] have produced a first

numerical solution of the JIMWLK equation. They do not
find any qualitative deviation from solutions of the BK
equation. The Nc corrections were found to be at a level of
a few percents.
Bartels, Lipatov, and Vacca [149] have considered Nc

corrections to the triple pomeron vertex:

dN

dy
= αsKer⊗

(
N −NN−

1

N2c
n

)

where the function n has to satisfy a separate equation.

5.4.3 Target correlations

For proton and realistic (not very dense) nucleus targets
a systematic approach towards inclusion of target corre-
lations has been developed by Levin and Lublinsky [195].
Target correlations can be introduced via a certain lin-
ear functional differential equation. In general, this linear
functional equation cannot be reformulated as a non-linear
equation. However, in the particular case when all n-dipole
correlations can be accounted for by a single correlation pa-
rameter, the equation can be brought to a modified version
of the BK equation:

dN

dy
= αsKer⊗ (N −κNN) . (68)
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In (68) κ≥ 1 is the correlation parameter to be found from
a model for the target.

5.4.4 Pomeron loops

Pomeron loops are the first steps towards restoration of
the t-channel unitarity. Iancu and Mueller [196] have con-
sidered rare fluctuations which were interpreted by Kozlov
and Levin [197] as pomeron loop contributions. Unfortu-
nately, it looks as if contributions from the pomeron loops
are difficult to incorporate in a framework of a single equa-
tion. They are known to modify the asymptotic behavior of
the amplitude N in the deep saturation limit, where they
give the following asymptotic behavior:

N(Y ) = 1− e−c(Y−Y0)
2
, Y →∞, c= 2ᾱs, BKE,

N(Y ) = 1− e−c(Y−Y0)
2/2, Y →∞, pom loops .

Recently there has been a lot of activity in attempting to
consistently include pomeron loops into high energy evolu-
tions [198–203].

5.4.5 Local multi-pomeron exchange

It is claimed that the BK equation sums all possible con-
tributions which are not suppressed either by αs orNc. For
example, the cubic term in (63) appears at next-to-leading
αs order only. In particular it is implied that all multi-
pomeron exchanges and multi-pomeron vertices are either
absorbed by the triple pomeron vertex of the BK equa-
tion or suppressed. Levin and Lublinsky [195] have argued
that this might not be true. They argue that in addition
to a possibility for a pomeron to split into two, there ex-
ists a process of multi-pomeron exchange, which is local in
rapidity. After these contributions were resummed in the
eikonal approximation, a newmodification of the BK equa-
tion was proposed:

dN

dy
= (1−N)αsKer⊗ (N −NN) . (69)

5.5 Energy conservation aspects

5.5.1 Rapidity veto

It is well known [16] that a major fraction of the higher
order corrections to (not only) BFKL is related to energy
conservation. The large effect of energy-momentum con-
servation is also clearly demonstrated by the numerical
analyses by Andersen–Stirling [21] and Orr–Stirling [18].
Conservation of energy and momentum implies the con-
servation of both the positive and the negative light cone
components, p± = E± pL. Although most analyses have
concentrated on the conservation of p+ as being more im-
portant, we will see below that also conservation of p− has
a very significant effect. In LLA the steps in ln(1/x) are as-
sumed to be large, and the necessary recoils due to energy
conservation are neglected. The main effect of conserva-

tion of the positive light cone component p+ = E+pL, is
that small steps in ln(1/x) with corresponding large recoils
are suppressed. One way to take this into account is to in-
troduce a veto, not allowing steps in ln(1/x) smaller than
a cut η. (This is called a rapidity veto also if the evolution
variable is defined as y = ln(1/x) and not the true rapid-
ity.) The effect of such a veto is studied in [75, 78, 204], and
at high energies it has a similar effect as the higher order
corrections, reducing the growth at small x.
A recent study of the BK equation in the presence of

a rapidity veto is presented by Chachamis, Lublinsky and
Sabio-Vera [205]. The application of this method to the BK
equation makes it non-local in rapidity:

dN(y)

dy
= αsKer⊗ (N(y−η)−N(y−η)N(y−η)) .

The veto somewhat delays saturation in accordance with
the expectations associated with the next-to-leading order
corrections. If the veto is put on top of the BK equation
with running αs then the effect of NLO corrections is sig-
nificantly reduced. This observation gives support to the
phenomenological studies of [162, 179].
An similar approach to this problem is presented by

Gotsman, Levin, Maor, and Naftali [206]. The effects of
the cut in ln(1/x) is taken into account in a modified BK
equation:

∂N(r, Y ; b)

∂Y
=
CFαs

π2

∫
d2r′r2

(r− r′)2r′2

(
1−

∂

∂Y

)

×

[
2N

(
r′, Y ;b−

1

2
(r− r′)

)
−N (r, Y ;b)

−N

(
r′, Y ;b−

1

2
(r− r′)

)
N

(
r− r′, Y ;b−

1

2
r′
)]
.

(70)

The derivative under the integral is related to a cut
in ln(1/x) ∝ ln p+. The modification of the pole at γ = 1,
which is related to conservation of the negative light cone
component p− = E−pL (or the inverse k⊥ ordering) and
the consistency constraint, is not included. The motivation
for this is that this effect is not important once the dipole
density has reached saturation, that is for x so small that
Q2s(x) >Q

2.
We note, however, that the non-leading effects can sig-

nificantly reduce the value of Q2s (x), and thus delay the
onset of saturation, as discussed in e.g. [188]. An essen-
tial result of the analysis discussed in the next subsection
is that also the conservation of p− has an important ef-
fect and contributes significantly to pushing the x-values,
where saturation becomes essential, to smaller values. We
note also that an estimate of the relative importance of sat-
uration and non-leading effects for the reduced growth rate
is very important for reliable extrapolations to higher ener-
gies at LHC and high energy cosmic rays.

5.5.2 Full energy-momentum conservation

A different approach to energy-momentum conservation is
presented in [207]. As discussed above non-leading effects



78 The Small x Collaboration: Small-x phenomenology – Summary of the 3rd Lund small-x workshop in 2004

are most easily studied in momentum space, while unitar-
ity or saturation effects are easier analyzed when formu-
lated in transverse coordinate space. In [207] similarities
between the linked dipole chain model (LDC) [204, 208]
in momentum space and the Mueller dipoles in trans-
verse coordinate space [134, 135, 154] are used to derive
a scheme for implementing energy-momentum conser-
vation in Mueller’s dipole formalism. It is conjectured
that only those gluon emissions which satisfy energy-
momentum conservation can correspond to real final state
gluons, and that keeping only these (with a correspond-
ing modification of the Sudakov form factor) will not only
give a better description of the final states, but also ac-
count for essential parts of the NLO corrections to the
BFKL equation. The approach is based on the observation
that the emission of a dipole with a very small transverse
size, r, corresponds to having two very well localized glu-
ons, and such gluons must have large transverse momenta
of the order p⊥ ∼ 1/r. By in this way assigning a trans-
verse momentum to each emitted gluon, and also taking
into account the recoils of the emitting gluons, it is possible
to make sure that each dipole splitting is kinematically
allowed.

Formalism

In the process γ∗→QQ̄→QgQ̄→QggQ̄→ . . . , a virtual
photon is split into a QQ̄ color dipole, which is first split
into two dipoles by the emission of a gluon, then into three
dipoles by a second gluon, etc. The process is illustrated in
transverse coordinate space in Fig. 25. The probability for
such a dipole splitting is given by the expression [134, 135,
154] (for notation see Fig. 25)

dP

dy
=
ᾱ

2π
d2r2

r201
r202r

2
12

·S ;

S = exp

[
−
ᾱ

2π

∫
dy

∫
d2r2

r201
r202r

2
12

]
. (71)

Here S denotes a Sudakov form factor.We note that the in-
tegral over d2r2 in the exponent diverges for small values of
r02 and r12. Therefore Mueller introduced a cutoff ρ, such
that the integration region satisfies r02 > ρ and r12 > ρ.
A small cutoff value ρ will here imply that we get very
many dipoles with small r-values.
If the dipole size, r, is small, it means that the glu-

ons are well localized, which must imply that transverse
momenta are correspondingly large. This implies that not

Fig. 25. A quark–antiquark dipole in transverse coordinate
space is split into successively more dipoles via gluon emission

Fig. 26. A dipole cascade, where a chain of smaller and smaller
dipoles is followed by a set of dipoles with increasing sizes.
This is interpreted as one k⊥-ordered cascade from the left and
one from the right , up to a central hard subcollision, which
is represented by the dipole with minimum size and therefore
maximum k⊥

only the new gluon gets a large k⊥ ∼ 1/r, also the original
gluon, which is close in coordinate space, gets a corres-
ponding recoil. Let us study the example in Fig. 26. For the
emissions of the gluons marked 2, 3, and 4 the dipole sizes
become smaller and smaller, a� b� c� d, in each step
of the evolution. The corresponding k⊥ therefore become
larger and larger in each step. After the minimum dipole,
with size d, the subsequent emissions, 5, and 6, give again
larger dipoles with correspondingly lower k⊥-values. The
probability for this chain is proportional to

d2r2a
2

a2b2
d2r3b

2

b2c2
d2r4c

2

c2d2
d2r5d

2

e2e2
d2r6e

2

f2f2
. (72)

For the first emissions, 2 and 3, in this expression we rec-
ognize the product of factors d2ri/r

2
i ∼
∏
d2ki/k

2
i , just

as is expected from a “DGLAP evolution” of a chain with
monotonically increasing k⊥. Emission number 4 corres-
ponds to the minimum dipole size, d, and we here note that
the factors of d cancel in (72). We therefore get the weight
d2r4 ∼ d2kmax/k4max, which corresponds to a hard gluon–
gluon collision. When the dipole sizes get larger again, this
gives factors corresponding to a “DGLAP chain” from the
other end of the chain, up to the central hard sub-collision.
It is also easy to see that for a chain with increasing

dipole sizes up to a maximum value, rmax, which thus cor-
responds to a minimum transverse momentum, k⊥min, we
get the weight d2rmax/r

4
max∼ d

2kmin. Therefore there is no
singularity for the minimum k⊥-value. This result agrees
exactly with the result in the linked dipole chain model,
LDC [204, 208], which is a reformulation of the CCFM
model [24, 25], interpolating between DGLAP and BFKL
for non-k⊥-ordered chains.
To study γ∗γ∗ scattering we imagine that the two vir-

tual photons split up into quark–antiquark pairs, which
develop into dipole cascades as schematically illustrated
in Fig. 27. When the two central dipoles collide and inter-
act via gluon exchange, it implies a recoupling of the color
charges, as indicated by the arrow, and the probability for
this is given by the expression [209]

f =
α2s
2

{
ln

[
|r1− r3||r2− r4|

|r1− r4| · |r2− r3|

]}2
. (73)

As the dipole cascades from the two virtual photons
branch out, it is also possible to have multiple collisions,
when more than one pair of dipoles from the left and the
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Fig. 27. A symbolic picture of a γ∗γ∗ collision in rapidity–
r⊥-space. The two dipole chains interact and recouple with
probability f given by (73)

right moving cascades are interacting. The total cross sec-
tion is then given by

σ ∼

∫
d2b
(
1− e−

∑
fij

)
, (74)

where b denotes the impact parameter.
With a small cutoff ρ (r > ρ)we get, asmentioned above,

very many small dipoles. If these are interpreted as real
emissions, it would imply a violation of energy-momentum
conservation. The emission of these small dipoles must be
compensated by virtual emissions. Thus the result in (74)
will describe the inclusive cross section, but the many
dipoles produced in all the branching chains will not corres-
pond to the production of exclusive final states.
The main feature of the LDC model is the observa-

tion that both the total cross section and the final state
structures are determined by chains consisting of a sub-
set of the gluons appearing in the final state. These gluons
were called “primary gluons” in [204] and later “backbone
gluons” in [210]. Remaining real final state gluons can be
treated as final state radiation from the primary gluons.
Such final state emissions do not modify the total cross
sections and give only small recoils to the parent emitters.
The primary gluons have to satisfy energy-momentum con-
servation and are ordered in both positive and negative
light-cone momentum components, p+ and p−. We saw
above that in Mueller’s cascade the emission probabilities
for gluons, which satisfy the conditions for primary gluons
in LDC, have exactly the same weight, when the transverse
momenta are identified with the inverse dipole size, 2/r.
This inspires the conjecture that with this identification
an appropriate subset of the emissions in Mueller’s cascade
can correspond to the primary gluons in the momentum
space cascade, meaning that they determine the cross sec-
tions, while the other emissions can be regarded as either
virtual fluctuations or final state radiation.
A necessary condition for this subset of gluons is that

energy and momentum is conserved. Therefore we ex-
pect that keeping only emissions which satisfy energy-
momentum conservation can correspond to real emissions,
and keeping only these emissions (with a corresponding
modification of the Sudakov form factor) will not only ac-
count for important NLO effects, but also give a closer
correspondence between the generated dipole chains and
the observable final states.

A very important consequence of energy-momentum
conservation is also that it implies a dynamical cutoff,
ρ(∆y), which is large for small steps in rapidity, ∆y, but
gets smaller for larger ∆y. (Alternatively it could be de-
scribed as a cutoff for ∆y which depends on r. Note that
in this formalism y is the true rapidity and not log(1/x).)
Conserving also the negative light-cone momentum, p−,
implies that in a similar way we may also get a maximum
value for r in each emission.
The net result of conservation of both p+ and p− is that

the number of dipoles growsmuchmore slowly with energy.
Besides its physical effects, this also simplifies the imple-
mentation in a MC program. It is here straightforward
to calculate cross sections and to study saturation effects,
by comparing the unitarized expression

∫
d2b(1−e−

∑
fij )

in (74) with
∫
d2b
∑
fij representing single IP exchange.

(The large numerical complications in MCs without energy
conservation, discussed in [209], are not present.)

Results

Below we show some results obtained with a fixed coupling
ᾱ= 0.2.
Dipole–dipole scattering. The cross section for scatter-

ing of two dipoles with sizes r1 and r2 is shown in Fig. 28.
With a fixed coupling the scaled cross section, σ/r22, de-
pends only on the ratio r1/r2. We can imagine a target with
size r2 ∼ 1/M , and a varying projectile size r1 ∼ 1/

√
Q2.

The results show that the cross section grows faster with
the total rapidity range, Y ∼ ln s, for smaller r1 (larger
Q2), in a way qualitatively similar to the behavior of the
proton structure function.
The effect of energy conservation is demonstrated

in Fig. 29 by the results obtained for the case r1 = r2, with
a constant cutoff, ρ = 0.02ri. Comparing with Fig. 28 we
see that energy conservation has a very strong effect, re-
ducing σ by almost an order of magnitude for Y ∼ 13.

Fig. 28. The scaled unitarized dipole–dipole cross section,
σ/r22, as a function of Y for different initial conditions
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Fig. 29. The scaled unitarized (full line) and one-pomeron
(dashed line) dipole–dipole cross sections calculated without
energy conservation

In Fig. 29 we also see that without energy-momentum
conservation the effect of multiple IP exchange (satura-
tion) is about a factor 2 for r1 = r2 and Y = 13. The much
smaller cross section obtained with energy-momentum
conservation implies that the saturation effect is much
less important, being only ≈ 20% for the same parameter
values.
Dipole–nucleus and dipole–proton collisions. Dipole–

nucleus collisions have been studied using a toy model nu-
cleus, with a Gaussian distribution in dipole size r and
impact parameter b. The dipole density is given by

dN =Bd2re−r
2/r20 d2be−b

2/b20 . (75)

The widths of the distributions are taken to be r0 = 1 fm
and b0 =A

1/31 fm (where A is the mass number of the nu-
cleus), and the normalization constant B is adjusted so
that the transverse energy is given by A1 GeV.
The results for A= 200 and projectile sizes rproj = 0.1

and 1 GeV−1 are shown in Fig. 30. Results are presented
both for single pomeron exchange and including unitariza-
tion. The effect of unitarization growswith nuclear size and
with the size of the projectile. For a small projectile of size
0.1 GeV−1 we can see the effect of color transparency, as
the cross sections for the unitarized and the one pomeron
calculations are almost identical. For a larger projectile
we do see a clear effect from unitarization, but even for
rproj = 1GeV

−1 and a nucleus with A = 200 this effect is
only about 20% in the rapidity interval 10–14. For smaller
nuclei the effect will be correspondingly smaller.
When the same toy model is applied to deep inelastic

ep scattering (with A = 1 and simply identifying Q2 with
4/r2proj), we want to emphasize that we here only want to
study the qualitative behavior. A quantitative comparison
with HERA data has to wait for an improvement of the
crude toy model for the proton target (dipole correlations
may be important), and one should then also take into ac-
count the detailed effects of the photon wave function.

Fig. 30. The dipole–nucleus cross section for rproj = 0.1 and
1GeV−1 andA= 200. The unitarized result is shown by the solid
lines, and the one-pomeron contribution by the dashed lines

Fig. 31. The scaled dipole–p cross section as a function of
log 1/x, for Q2 = 4GeV2 and Q2 = 400 GeV2. The unitarized
results are shown by the solid lines, while the dashed lines show
the one-pomeron results

The resulting dipole–nucleon cross section is shown
in Fig. 31 for two different projectile sizes, corresponding
to Q2 = 4GeV2 and Q2 = 400GeV2. The result for single
pomeron exchange, i.e. without unitarization corrections,
is shown by the dashed lines, and we see that the effect
from unitarization is quite small.
In Fig. 31 we also see that the logarithmic slope λeff =

d(logσ)/d(log 1/x) is increasing with increasing Q2. The
effective slope, λeff, is not a constant for fixed Q

2, but
depends on both Q2 and x, when unitarization and/or en-
ergy conservation is taken into account. For the compari-
son with experimental data Fig. 32 shows λeff determined
in the x-interval used in the analysis by H1 [211], which
varies from x≈ 2×10−5 forQ2 = 1.5 GeV2 to x≈ 3×10−2

for Q2 = 90GeV2. We note that the result of our crude
model is not far from the experimental data, although the
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Fig. 32. The effective slope measured at different Q2 com-
pared to data from HERA. The full line is our model including
unitarization, while the dashed line is without. Filled circles are
data from ZEUS [212], filled [31] and open [213] squares are
data from H1

dependence on Q2 is somewhat weaker in the model calcu-
lations. As in Fig. 31 we see that the effect of unitarization
is small, and, as expected, it gets further reduced for larger
Q2-values.
Thus we find that the result of the simple model is sur-

prisingly close to the experimental data from HERA. The
effect of energy conservation is a suppression for small x-
values and small Q2, which is qualitatively similar to the
effect expected from unitarization. This suppression is so
strong that the effect from adding unitarization is only
a very small correction, visible for small-Q2-values.
If we compare these results with those of [206], we

find a significantly larger effect from energy-momentum
conservation. One reason appears to be the inclusion of
p−-conservation. This is related to the consistency con-
straint in (64), which orders the emissions in the negative
light cone momentum. In the formalism discussed here this
is found to have a noticeable effect. Thus we find that in-
cluding only conservation of p+, and not of p−, increases
the cross section by a factor 2 (3) for dipole–proton col-
lisions at Q2 = 4 (400)GeV2. Consequently we conclude
that full energy-momentum conservation is very essential
for the result and for the relative importance of saturation
and NLO effects.

5.6 Outlook

It is essential for the future phenomenological studies
to eliminate the model dependent treatments of the im-
pact parameter. Though the BK equation has been solved
numerically with the full b dependence traced [167, 168],
these results are not yet suitable for phenomenological
applications.
A further study of the relation between the dipole

picture versus traditional diagrammatics based on the s-
channel unitarity is needed. In particular, it is not clear

if the dipole picture survives at NLO. In general there is
a quest for a simple effective reggeon field theory in QCD.
The large effect of full energy-momentum conservation

make further studies of the relative importance of NLO ef-
fects and saturation important.
NLO effects and saturation both contribute to a reduc-

tion of the parton distributions for small x. An improved
understanding of these effects, including the relation be-
tween them, is very important for extrapolations to higher
energies at LHC or high energy cosmic ray events.
The discussions presented above concentrate on total or

inclusive cross sections. More work is also needed to calcu-
late the properties of the resulting final states.

6 Multiple interactions, saturation
and rapidity gaps

6.1 AGK cutting rules

6.1.1 Introduction

Multiple parton interactions play an important role both
in electron proton scattering at HERA and in high energy
proton–proton collisions at the LHC. At HERA, the lin-
ear QCD evolution equations provide, for not too smallQ2,
a good description of the F2 data (and of the total γ

∗p

cross section, σγ
∗p
tot ). This description corresponds to the

emission of partons from a single chain (Fig. 33a). How-
ever, at low Q2 where the transition to non-perturbative
strong interaction physics starts, this simple picture has
to be supplemented with corrections. First, there exists
a class of models [151, 153, 214] which successfully describe
this transition region; these models are based upon the idea
of parton saturation: they assume the existence of multi-
ple parton chains (Fig. 33b) which interact with each other,
and they naturally explain the observed scaling behavior,
F2(Q

2, x) ≈ F2(Q2/Q2s(x)) with Q
2
s (x) =Q

2
0(1/x)

λ. Next,
in the photoproduction region, Q2 ≈ 0, direct evidence for
the presence of multiple interactions also comes from the
analysis of final states [215]. A further strong hint at the

Fig. 33. Contributions to the total cross section σγ
∗p
tot : a the

single chain representing the linear QCD evolution equations;
b gluon production from two different gluon chains
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Fig. 34. Hard diffractive final states. a di-jet production; b the
diffractive cross section as s-channel discontinuity of a two-
ladder diagram

presence of multi-chain configurations comes from the ob-
servation of a large fraction of diffractive final states in
deep inelastic scattering at HERA. In the final states an-
alysis of the linear QCD evolution equations, it is expected
that the produced partons are not likely to come with
large rapidity intervals between them. In the momentum-
ordered single chain picture (Fig. 33a), therefore, diffrac-
tive final states should be part of the initial conditions
(inside the lower blob in Fig. 33a), i.e. they should lie be-
low the scale Q20 which separates the parton description
from the non-perturbative strong interactions. This assign-
ment of diffractive final states, however, cannot be com-
plete. First, data have shown that the pomeron which gen-
erates the rapidity gap in DIS diffraction is harder than
in hadron–hadron scattering; furthermore, there are spe-
cific diffractive final states with momentum scales larger
than Q20, e.g. vector mesons built from heavy quarks and
diffractive di-jets (illustrated in Fig. 34): the presence of
such final states naturally requires corrections to the sin-
gle chain picture (Fig. 34b). From a t-channel point of
view, both Fig. 33b and Fig. 34b belong to the same class
of corrections, characterized by four-gluon states in the t-
channel.
In proton–proton collisions corrections due to multi-

ple interactions should be important in those kinematic
regions where parton densities for small momentum frac-
tions and for not too large momentum scales are being
probed, e.g. jet production near the forward direction. An-
other place could be the production of multi-jet final states
(Fig. 35): multiple jets may come from different parton
chains, and these contributions may very well affect the
background to new physics beyond the standard model.
Moreover, the modeling of multi-jet configurations will be
necessary for understanding the underlying event structure
in pp collisions (see [216] and references therein).
From the point of view of collinear factorization, multi-

ple interactions with momentum-ordered parton chains are
higher-twist effects, i.e they are suppressed by powers of
the hard momentum scale. At small x, however, this sup-
pression is compensated by powers of the large logarithms,
ln 1/x: multiple interactions, therefore, are mainly part of
small-x physics. In this kinematic region the Abramovsky–
Gribov–Kanchelli (AGK) [217] rules can be applied to the

Fig. 35. Jet production in
pp collisions from two differ-
ent parton chains

analysis of multi-gluon chains, and it is the aim of this art-
icle to present a brief overview about the current status of
the AGK rules in pQCD.
As we will discuss below, in the analysis of multiple par-

ton chains the couplings of n gluons to the proton play an
essential role. Regge factorization suggests that these cou-
plings should be universal, i.e. the couplings in γ∗p colli-
sions at HERA are the same as those in pp scattering at the
LHC. Therefore, a thorough analysis of the role of multiple
interactions in deep inelastic electron–proton scattering at
HERA should be useful for a solid understanding of the
structure of events at the LHC.

6.1.2 Basics of the AGK cutting rules

The original AGK paper [217], which was written before
the advent of QCD, addresses the question how, in the op-
tical theorem,

σpptot =
1

s
Im T2→2 =

∑
f

∫
dΩf |Ti→f |

2 , (76)

the presence of multi-pomeron exchanges (Fig. 36) in the
total hadron–hadron cross section leads to observable ef-
fects in the final states (RHS of (76)). Based upon a few
model-independent assumptions on the couplings of multi-
pomeron exchanges to the proton, the authors derived sim-
ple ‘cutting rules’: different contributions to the imaginary
part belong to different cuts across the multi-pomeron dia-
grams, and each cut has its own, quite distinct, final state
characteristics. As a result, the authors found counting
rules for final states with different particle multiplicities,
and they proved cancellations among rescattering correc-

Fig. 36. s-cut through a multi-
pomeron exchange: the zig-zag
lines stand for non-perturbative
pomerons
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tions to single-particle and double-particle inclusive cross
sections.
In the QCD description of hard (or semi-hard) fi-

nal states a close analogy appears between (color-singlet)
gluon ladders and the non-perturbative pomeron: multi-
ple parton chains (for example, the two chains in Fig. 33b)
can be viewed as cuts through two perturbative BFKL
pomerons. In the same way as in the original AGK pa-
per, the question arises how different cuts through a QCD
multi-ladder diagram can be related to each other. In the
following we briefly describe how AGK cutting rules can be
derived in pQCD [218, 219]. Subsequently we will present
a few new results which come out from pQCD calculations,
going beyond the original AGK rules, followed by some
numerical estimates of the effects which can be expected.
One of the few assumptions made in the original AGK

paper states that the coupling of the pomerons to the ex-
ternal particle are (i) symmetric under the exchange of
the pomerons (Bose symmetry), and (ii) that they remain
unchanged if some of the pomerons are being cut. These
properties also hold in pQCD, but they have to be refor-
mulated: (i’) the coupling of (reggeized) gluons to external
particles is symmetric under the exchange of reggeized glu-
ons, and (ii’) it remains unchanged if we introduce cutting
lines between the gluons. In QCD, however, the color de-
gree of freedom also allows for another possibility: inside
the n-gluon state (with total color zero), a subsystem of
two gluons can form an antisymmetric color-octet state: in
this case the two gluons form a bound state of a reggeized
gluon (bootstrap property). For the case of γ∗γ∗ scatter-
ing, explicit calculations [220] have shown that the coup-
ling of n gluons to virtual photons can be written as a sum
of several pieces: the fully symmetric (‘irreducible’) one
which satisfies (i’) and (ii’), and other pieces which, by
using the bootstrap property, can be reduced to symmet-
ric couplings of a smaller number of gluons (‘cut reggeons’).
This decomposition is illustrated in Fig. 37. Since the boot-
strap property is related to the reggeization of the gluon
and, therefore, is expected to be valid to all orders of per-
turbation theory, also these properties of the couplings of
multi-gluon states to external particles should be of general
validity. In this short review we will mainly concentrate on
the symmetric couplings.
As an illustrative example, we consider the coupling of

four gluons to a proton. The simplest model of a symmetric
coupling is a sumof three pieces, each ofwhich contains only
the simplest color structure (Fig. 38). The best-known cut-
ting rule for the four-gluonexchangewhich follows [218,219]

Fig. 37. Decomposition of the coupling of four gluons to a vir-
tual photon. In the last two terms on the RHS it is understood
that we have to sum over different pairings of gluons at the
lower end

Fig. 38. The symmetric coupling of four gluons to an external
particle. The lines inside the blob denote the color connection,
e.g. the first term has the color structure δa1a2δa3a4

Fig. 39. Different cutting linesin the four-gluon exchange

from this symmetry requirement is the ratio between the
three different pairings of lines given in Fig. 39. Each term,
on the partonic level, corresponds to a certain multiplicity
structure of the final state: a rapidity gap (‘zero multipli-
city’), double multiplicity, and single multiplicity. Simple
combinatorics then leads to the ratio [217]

1 : 2 :−4 . (77)

for the two-ladder contribution to the cross section. In
order to be able to generalize and to sum over an arbitrary
number of gluon chains, it is convenient to use an eikonal
ansatz:

NA2n(k1, a1; . . . ;k2n, a2n;ω)

=
1√

(N2c −1)
n

( ∑
Pairings

φA(k1,k2;ω12)δa1a2 . . .

φA(k2n−1,k2n;ω2n−1,2n)δa2n−1a2n

)
. (78)

Inserting this ansatz into the hadron–hadron scattering
amplitude, using the large-Nc approximation, and switch-
ing to the impact parameter representation, one obtains,
for the contribution of k cut gluon ladders, the well-known
formula

Im Ak = 4s

∫
d2beiqbP (s,b) , (79)

where

P (s,b) =
[Ω(s,b)]k

k!
e−Ω(s,b) , (80)

and Ω stands for the (cut) two-gluon ladder.
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Fig. 40. AGK cancellations in the one-jet inclusive cross sec-
tion

Fig. 41. a Non-vanishing rescattering corrections in the one-
jet inclusive cross section; b a new vertex: g+2g→ jet

Another result [219] which follows from the symmetry
properties of the n gluon–particle coupling is the cancel-
lation of rescattering effects in single and double inclusive
cross sections. In analogy with the AGK results on the
rescattering of soft pomerons, it can be shown that the sum
over multi-chain contributions and rescattering corrections
cancels (Fig. 40), leaving only the single chain contribu-
tion (in agreement with the factorization obtained in the
collinear analysis). This statement, however, holds only for
rescattering between the two projectiles: it does not affect
the multiple exchanges between the tagged jet and the pro-
jectile (Fig. 41) which require a separate discussion (see
below). All these results can be generalized to include also
the soft pomeron: all one needs to assume is that the cou-
plings of soft pomerons and reggeized gluons are symmetric
under interchanges, and they are not altered if cutting lines
are introduced.

6.1.3 New results

Explicit calculations in QCD lead to further results onmul-
tiple interactions. First, in the four-gluon exchange there
are other configurations than those shown in Fig. 39; one
example is depicted in Fig. 42. Here the pairing of gluon
chains switches from (14)(23) in the upper part (= left
rapidity interval) to (12)(34) in the lower part (= right ra-
pidity interval). One can show that the ratio 1 : 2 :−4 holds
for each rapidity interval. In [219] this has been generalized
to an arbitrary number of exchanged gluon lines.
Another remark applies to the applicability of the cut-

ting rules to rescattering corrections in the single jet in-
clusive cross section (Fig. 41). Below the jet vertex we,

Fig. 42. Decomposition into two rapidity intervals: the upper
(left) interval has double multiplicity, the lower (right) one cor-
responds to a rapidity gap

again, have an exchange of four gluon lines, similar to the
diagram in the middle of Fig. 39. As to the cutting rules,
however, there is an important difference between the two
situations. In Fig. 39, the blob above the four gluons is to-
tally inclusive, i.e. it contains an unrestricted sum over
s-channel intermediate states, whereas in Fig. 41 the part
above the four-gluon state is semi-inclusive, i.e. it con-
tains the tagged jet. This ‘semi-inclusive’ nature destroys
the symmetry above the four-gluon states, and the cut-
ting rules have to be modified [221, 222]. In particular,
(78)–(79) are not applicable to the rescattering corrections
between the jet and projectile. A further investigation of
these questions is in progress [223].
Finally a few comments on reggeization and cut reggeons.

Clearly there are more complicated configurations than
those which we have discussed so far; an example appears
in γ∗p scattering (deep inelastic electron proton scatter-
ing). In contrast to pp scattering, the coupling of multi-
gluon chains to the virtual photon can be computed in
pQCD, and the LO results, for the case of n= 4 gluons, are
illustrated in Fig. 43. It turns out that we have two alter-
native possibilities: in the completely inclusive case (total
cross section), it is convenient to chose Fig. 43a, i.e. the
sum of all contributions can be decomposed into two sets
of diagrams. In the first set, at the top of the diagram two
gluons couple to the quark–antiquark pair, and the subse-
quent transition to the four-gluon state goes via the pQCD
triple pomeron vertex. This vertex, as a function of the
four gluons below, has the symmetry properties described
above. As a result, we can apply the cutting rules to the
four-gluon state, as discussed before. However, there is also
the second term in Fig. 43a, which consists of a two-gluon
state only: this is the reggeizing contribution we have men-
tioned before. As indicated in the figure, the splitting of
the reggized gluons at the bottom amounts to a change in
the (non-perturbative) coupling. We want to stress that,
because of the inclusive nature of this set of diagrams, the
triple pomeron vertex V in Fig. 43a, similar to the BFKL
kernel, contains both real and virtual contributions. For
this reason, the decomposition in Fig. 43a is applicable to
inclusive cross sections, and it is not convenient for investi-
gating specific final states such as, for example, diffractive
final states with a fixed number of quarks and gluons in the
final state.
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Fig. 43. Four-gluon contributions to γ∗p proton scattering:
two equivalent ways of summing over all contributions. a The
decomposition of Fig. 37 with the pQCD triple pomeron vertex.
b An alternative way of summation which explicitly shows the
coupling of two pomerons to the photon vertex and which leads
to a new vertex Z

There exists an alternative way of summing all contri-
butions (Fig. 43b) which is completely equivalent
to Fig. 43a but allows one to keep track of diffractive qq̄,
qq̄g, . . . final states: this form is illustrated in Fig. 43b. One
recognizes the ‘elastic intermediate state’ which was not
visible in Fig. 43a, and the new triple pomeron vertex Z
which contains only real gluon production. This vertex Z,
as discussed in [224], is no longer symmetric under per-
mutations of the gluons at the lower end; consequently,
we cannot apply the AGK cutting rules to the four-gluon
states below. These findings for multiple scattering ef-
fects in DIS imply, strictly speaking, that cross sections for
diffractive qq̄ or qq̄g states cannot directly be inserted into
the counting rules (77).
Also pp scattering will contain corrections due to mul-

tiple interactions which are more complex. There are, for
example, graphs which contain the 2→ 4 gluon vertex V ,
leading to a change of the number of gluon lines (Fig. 44).
Since this 2→ 4 gluon vertex, as a function of the four glu-
ons below the vertex, satisfies the symmetry requirements
listed above, we can apply our previous analysis to the
cutting lines below the vertex. In addition, however, one
can ask how the lines continue above the 2→ 4 gluon ver-
tex: we show two examples, one of them containing a cut
(reggeized) gluon. Concentrating on this two-gluon state
(i.e. we imagine that we have already summed over all
possible cutting lines below the vertex V ), the counting
rules are quite different: in contrast to the even-signature
pomeron, the gluon is a odd-signature reggeon. Conse-
quently, the cut gluon is suppressed with respect to the
uncut gluon by one power in αs, and this suppression leads
to the following hierarchy of cutting lines: the cut between
the gluons belongs to leading order, the cut through one
of the two reggeized gluons is suppressed by one power in

Fig. 44. A correction in which the number of lines changes.
The black vertex denotes the 2→ 4 gluon vertex

αs, the cut through both reggeized gluons is double sup-
pressed (order α2s ). A closer analysis of this question is
under investigation [223].

6.1.4 Conclusions

Corrections due to multiple interactions seem to be im-
portant in DIS at small x and low Q2; they are expected
to play a significant role also in multi-jet production in
pp scattering. The study of the AGK rules to pQCD pro-
vides help in understanding the systematics of multiple
gluon chains. Results described in this review represent the
beginning of a systematic analysis. We have listed a few
questions which require further work.
As an immediate application, we believe that a quanti-

tative analysis of multiple scattering at HERA will provide
a useful input to the modeling of final states at the LHC.

6.2 Experimental consequences

Experimentally it is easy to differentiate between diffrac-
tive and single or multiple inclusive final states since
diffractive states exhibit large rapidity gaps. The multi-
ple inclusive final states should also be distinct from the
single inclusive ones since, at least naively, we would ex-
pect that in the multiple case the particle multiplicity
should be considerably higher. At low x, however, the
relation between the number of virtual states excited in
the interaction (as measured by F2) and the final particle
multiplicity cannot be straightforward since the growth
of F2 with decreasing x is faster than the multiplicity
increase. This may indicate that the hadronization mech-
anism may be different from the string picture commonly
used in the hadronization procedure of single chain par-
ton showers. The influence of multiple scattering on the
particle multiplicity of the final states should also be
damped by the energy conservation. The cut through sev-
eral pomerons leads clearly to more gluons produced in the
final state, but the available energy to produce particles
in the hadronization phase remains the same. A detailed
Monte Carlo program is therefore necessary to evaluate
this effect.
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The number of diagrams contributing to the reac-
tion amplitude increases very quickly with the number of
pomerons. For the three-pomeron amplitude the gluons
can be paired in 15 possible ways, shown in Fig. 46 with
the examples of zero-pomeron, one-pomeron, two-pomeron
and three-pomeron cuts. For m-pomerons the number of
possible gluon pairs and also of diagrams is

(2m−1)(2m−3)(2m−5) . . .= (2m−1)!/(2m−1(m−1)!).

Assuming that all the diagrams for a given multi-
pomeron exchange amplitude contribute in the same way,
the above analysis suggests that the probability for differ-
ent cuts to contribute should be given by the combinato-
rial factors. This is the content of the AGK rules which
were obtained from the analysis of field theoretical dia-
grams well before QCD was established [217] and which
relate the cross section, σk, for observing a final state
with k-cut pomerons with the amplitudes for exchange of
m-pomerons, F (m):

σk =
∞∑
m=k

(−1)m−k2m
m!

k!(m−k)!
F (m) . (81)

The same result is also obtained from a detailed analy-
sis of the Feynman diagram contributions in QCD above
with the oversimplified assumption that only the symmet-
ric part of the two-gluon couplings contributes [219].

6.3 Multiple Interactions in the dipole model

The properties of the multi-pomeron amplitude and of the
cut pomeron cross sections can be quantitatively studied
in a dipole model. Along the lines which were discussed
in Sect. 5 the γ∗p interaction proceeds in three stages:
first the incoming virtual photon fluctuates into a quark–
antiquark pair, then the qq̄ pair elastically scatters on the
proton, and finally the qq̄ pair recombines to form a vir-
tual photon. The total cross section for γ∗p scattering, or
equivalently F2, is obtained by averaging the dipole cross
sections with the photon wave functions, ψ(r, z), and inte-
grating over the impact parameter, b:

F2 =
Q2

4π2αem

∫
d2r

∫
dz

4π
ψ∗ψ

∫
d2b
dσqq
d2b

. (82)

Here ψ∗ψ denotes the probability for a virtual photon to
fluctuate into a qq̄ pair, summed over all flavors and helic-
ity states. The dipole cross section is assumed to be a func-
tion of the opacityΩ:

dσqq
d2b

= 2

(
1− exp

(
−
Ω

2

))
. (83)

At small x the opacity Ω can be directly related to the
gluon density, xg(x, µ2), and the transverse profile of the
proton, T (b):

Ω =
π2

NC
r2αs(µ

2)xg(x, µ2)T (b) . (84)

Fig. 45. The single gluon-ladder contribution to the total γ∗p
cross section. The blob at the lower end of the diagrams con-
tains the physics below the scale Q20 which separates hard from
soft physics, whereas the blob at the upper end contains hard
physics that can be described by pQCD. The dashed line de-
notes the cut

The parameters of the gluon density are determined from
the fit to the total inclusive DIS cross section [225].
The transverse profile was determined from the exclusive
diffractive J/Ψ cross sections [225]. The opacity function
Ω determined in this way has predictive properties; it al-
lows one to describe other measured reactions, e.g. charm
structure function or elastic diffractive J/Ψ production.
For a small value of Ω the dipole cross section, (83),

is equal to Ω and therefore proportional to the gluon
density. This allows one to identify the opacity with the
single-pomeron exchange amplitude of Fig. 45. The multi-
pomeron amplitude is determined from the expansion

dσqq
d2b

= 2

(
1− exp

(
−
Ω

2

))

= 2
∞∑
m=1

(−1)m−1
(
Ω

2

)m
1

m!
, (85)

as

F (m) =

(
Ω

2

)m
1

m!
, (86)

since the dipole cross section can be expressed as a sum of
multi-pomeron amplitudes [226] in the following way:

dσqq
d2b

= 2
∞∑
m=1

(−1)m−1F (m) . (87)

The cross section for k-cut pomerons is then obtained from
the AGK rules, (81), and from the multi-pomeron ampli-
tude, (86), as:

dσk
d2b
=

∞∑
m=k

(−1)m−k2m
m!

k!(m−k)!

(
Ω

2

)m
1

m!

=
Ωk

k!

∞∑
m=k

(−1)m−k
Ωm−k

(m−k)!
, (88)

which leads to a simple expression:

dσk
d2b
=
Ωk

k!
exp(−Ω) . (89)
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Fig. 46. Three-pomeron contributions to the elastic γ∗p am-
plitude. All 15 possible diagrams are shown with some exam-
ples of pomeron cuts

Fig. 47. Examples of b dependence of various cut dipole and
diffractive cross-sections

Fig. 48. F2 and the contributions of k-cut pomeron processes,
F k2

The diffractive cross section is given by the difference be-
tween the total and the sum over all cut cross sections:

dσdiff
d2b

=
dσtot
d2b

−
∞∑
k=1

dσk
d2b

= 2

(
1− exp

(
−
Ω

2

))
− (1− exp(−Ω))

=

(
1− exp

(
−
Ω

2

))2
. (90)

The cut cross sections determined in the dipole model
analysis of HERA data have several interesting proper-
ties shown in Fig. 47: for small dipoles (r = 0.1 fm) the
opacity Ω is also small, so the single cut cross section,
σ1, dominates. This leads to particle production emerging
only from the one-cut pomeron, which should correspond,
in the context of e.g. the LUND model, to a fragmenta-
tion of only one string. For larger dipoles (r = 0.6 fm) the
dipole cross section starts to be damped in the middle of
the proton (at b≈ 0) by saturation effects. Therefore, the
single cut cross section is suppressed in the middle while
the multiple cut cross sections, σ2, σ3, etc, become sub-
stantial and increasingly concentrated in the proton cen-
ter. These, fairly straightforward properties of dipoles in-
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Fig. 49. Fractions of single (k = 1), multiple interaction (MI)
and diffraction (D) in DIS

dicate that in the central scattering events the multiple
scattering probability will be enhanced, which may lead
at the LHC to substantial effects in a surrounding event
multiplicity.
The contribution to F2 from the k-cut pomeron ex-

changes are computed in the analogous way to F2:

F k2 =
Q2

4π2αem

∫
d2r

∫
dz

4π
ψ∗ψ

∫
d2b
dσk
d2b
. (91)

These contributions are shown, together with F2, as a func-
tion of x for two representative Q2-values in Fig. 48. One
finds that multiple interaction contributions, i.e. k ≥ 2,
in the perturbative region, at Q2 = 4GeV2, are substan-
tial. In the typical HERA range of x ≈ 10−3–10−4, the
k = 2 contribution is around 10% of F2 and the contribu-
tions of higher cuts are also non-negligible. For example,
the contribution of the five-cut pomeron exchanges is still
around 0.5%, which means that at HERA, many thou-
sand events may come from this type of process. Figure 49
shows the fraction of the multiple interaction processes,
FMI2 = F

k=2
2 +F k=32 +F k=42 +F k=52 in F2, at the same Q

2-
values. At Q2 = 4GeV2 the fraction of multiple scattering
events is around 14% and at Q2 = 40GeV2 around 6%, in
the HERA x region, which indicates that the decrease of

Fig. 50. Left: F2 and the contributions of k-cut pomeron pro-
cesses. Right: Fractions of single (k = 1), multiple interaction
(MI) and diffraction (D) in DIS at Q2 = 0.4 GeV2

multiple scattering with increasing Q2 is only logarithmic.
The fraction of diffractive processes, shown for compari-
son, is of the same order and drops also logarithmically
with Q2. The logarithmic drop of the diffractive contri-
bution expected in the dipole model is confirmed by the
data [227].
The dipole model provides a straightforward extrap-

olation to the region of low Q2, which is partly pertur-
bative and partly non-perturbative. Figure 50 shows the
contribution to F2 of k-cut pomeron processes and the frac-
tions of multiple interactions and diffractive processes at
Q2 = 0.4 GeV2.
Note also that, as a byproduct of this investigation, the

ratio of diffractive and inclusive cross sections, FD2 /F2 is
found to be almost independent of x, in agreement with
the data and also other dipole model predictions [153,
214, 227]. The absolute amount of diffractive effects is un-
derestimated, since the evaluation of diffraction through
AGK rules is oversimplified. It is well known [153] that
a proper evaluation of diffraction should also take into ac-
count the qq̄g contribution which is missing in the simple
AGK schema.
Hence, we find that the impact parameter dependent

dipole saturation model [225] reproduces well the main
properties of the data and leads to the prediction that mul-
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tiple interaction effects at HERA should be of the order of
diffractive effects, which are known to be substantial. The
multiple interaction effects should decrease slowly (loga-
rithmically) with increasingQ2, similarly to the diffractive
contribution.

7 Experimental comparisons

With the luminosity collected at HERA during the past
years very precise measurements of the proton structure
function, F2(x,Q

2), have been performed over a large
range in the fractional proton energy, x, and in the photon
virtuality, Q2. The measurements are now limited by sys-
tematic errors rather than statistical. Parton density func-
tions have been obtained mainly by fitting the DGLAP
equations, evolved from an input scaleQ20, to the structure
functions, measured at some scale Q2. Especially the pre-
cision data at low Q2 have provided an important input to
various QCD fit analyses. It was recognized early that in-
clusive measurements, like that of structure functions, are
not very sensitive to the new parton dynamics expected
to appear in the low x region. Instead evidence from such
dynamics has to be found from investigations of hadronic
final states in a phase-space region where the DGLAP gov-
erned evolution is suppressed. Thus, a global fit, which also
includes data from more exclusive processes, would further
constrain the PDFs. A problem is that measurements of
the hadronic final states suffer frommuch larger uncertain-
ties than the inclusive structure function measurements
and therefore measurements of many different complemen-
tary processes are desirable.
Forward jet production in DIS is expected to be sen-

sitive to new dynamics and early results indeed showed
a deviation from the predictions of the LO DGLAP model
as well as of NLO calculations. However, with the inclusion
of resolved photon contributions, DGLAP provided the
same level of agreement as the color diple model (CDM),
in which the parton emission follows the same scheme as
in the new dynamics proposed. Only recent studies of fi-
nal states with a ‘forward jet and two additional jets’ give
the first evidence for parton dynamics in which there is
additional breaking of the kt-ordering compared to that
predicted by the resolved photon model.
Di-jet data may be used to gain better insight into the

dynamics of the parton evolution and for extracting updf’s.
In the low x region boson–gluon fusion processes are dom-
inating and in the LO DGLAP description the gluon and
the photon collide head on in the hadronic center-of-mass
system and thus will be produced back-to-back. Deviations
from this may arise from additional radiation and if the
parton propagator, entering the hard scattering process,
has significant transverse momentum, such that the two
partons produced in the hard intreraction are no longer
balanced in transverse momentum. Thus, the two jets pro-
duced will not be back-to-back in azimuth. Ameasurement
of the azimuthal correlation between the two jets should
be directly sensitive to the predictions of models based on
different evolution schemes.

The flavor composition of the final state can also
provide important information about the evolution and
production mechanisms of partons. This has motivated
a measurement of final states with identified strange
particles.
Although F2 data can be well described by the ex-

change of a single-gluon ladder, it is unlikely that a single
chain generates large rapidity gaps, which is the signature
of diffractive processes. The traditional picture of diffrac-
tive processes is scattering by the virtual photon against
a pomeron with a partonic structure. Over the past years
significant progress in the understanding of diffraction has
been made at HERA, which has led to a modification of
this description. Data are much better described assuming
multi-gluon exchange, where a pair of gluons is the min-
imum to create a color singlet state. The multi-pomeron
exchange model provides a natural connection between in-
clusive scattering, diffractive scattering and multiple scat-
tering given by different cuts through the ladder diagrams
according to the so-called AGK cutting rules, as discussed
in Sect. 6. Rapidity gaps between high transverse-energy
jets have been observed at the Tevatron, at a fraction that
is in good agreement with BFKL predictions. Also multi-
ple scattering has been studied at the Tevatron and was
found to give significant contributions to the final state. In
ep collisions at HERA multiple interactions can occur in
processes where the exchanged photon interacts via its par-
ton content. Through the possibility to control the fraction
of the photon momentum, xγ , entering into the scatter-
ing process, more systematic investigations of underlying
events may be performed at HERA over a wide energy
range.
In general, measurements of final states provide infor-

mation about the hard scattering process, parton evolu-
tion, initial and final state radiation and multiple interac-
tions. Thus, it is important to measure, as accurately as
possible, the final states in order to test the theoretical
models.
In the following the studies of multiple interactions,

gaps between jets, forward jets and strange particle pro-
duction will be discussed in more detail.

7.1 Multiple interactions at the Tevatron and HERA

Since hadrons are composite objects of quarks and glu-
ons there is a certain probability that collisions between
hadrons involve more than one parton interaction i.e. we
have multiple interactions (MI). As a consequence of the
strong rise of the parton distribution at low x the proba-
bility to have MI increases with the collision energy and
the effect at the Tevatron has turned out to be significant.
At the LHC the contribution from MI will be even larger.
In electron–proton collisions at HERA MI may occur in
processes where the exchanged photon is resolved and in-
teracts via its parton content. The final state of collisions
with MI will thus contain the products of the primary hard
collisions, those of additional soft or semi-hard parton in-
teractions, contributions from initial and final state radia-
tion and from the beam remnants. All products not coming
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from the primary interaction contribute to the so-called
underlying event (UE).
Effects of MI will influence the total cross section, the

inclusive jet cross section, the jet multiplicity, the jet pro-
file, the jet pedestal (the level of transverse energy outside
the jets), the transverse energy flow and transverse energy
correlations, the hadron multiplicity, the multiplicity cor-
relations andmay cause largemultiplicity fluctuations. Ex-
perimental data from HERA and the Tevatron have been
compared to various theoretical models containing a de-
scription of MI.

7.1.1 Monte Carlo models for description
of multiple interactions

So far multiple interactions are theoretically not well un-
derstood. The theoretical description is mainly based on
QCD inspired models, which assume a hard scattering pro-
cess superimposed on soft or semi-hard interactions. Vari-
ous models differ in how initial and final state radiation is
taken into account as well as how the hadronization process
and the beam remnants are treated.
HERWIG [228, 229] assumes that the UE is a soft colli-

sion between the two beam “clusters”. The parameters of
this model are tuned to describe experimental results on
soft hadron–hadron collisions. Also the strength and fre-
quency parameters of the secondary interactions are sub-
ject to tuning. There is a possibility to include multiparton
interactions by employing an interface to the JIMMY gen-
erator [230, 231]. To some extent the formalism that is used
to describe MI in JIMMY is the same as in PYTHIA (see
below).
PYTHIA [232] assumes that each interacting beam

hadron (or resolved photon) leaves behind a beam rem-
nant, which does not radiate. In contrast to the original
HERWIG and ISAJET generators, PYTHIA uses mul-
tiple parton interactions to enhance the activity of the
UE. In the simplest version of the PYTHIA multiple in-
teraction model, the transverse-momentum cutoff of the
hard interactions is lowered to pmiat < pmint . The mean
number of (semi-) hard interactions is given by 〈n〉 =
σparton(p

mia
t )/σnd, where σnd is the non-diffractive part of

the total cross section. The distribution of the number of
interactions is not uniquely determined. In the simplest
approach the fluctuations are calculated from a Poisson
distribution. In the more sophisticated version the number
of interactions are given by a Poisson distribution for each
given impact parameter, where the impact parameter de-
pendence is given by a double-Gaussian overlap function.
The number of additional interactions is typically of order
1–2 . The parton process with the highest transverse mo-
mentum in the partonic final state can be calculated by
the quark/gluon 2→ 2 matrix element. Additional parton
interactions in the event are calculated from perturbative
gluon–gluon scattering processes.
Simulations of photon–hadron processes have frequent-

ly been performed using the PHOJET generator [233].
PHOJET was designed to simulate, in a consistent way, all
components which contribute to the total photoproduction
cross section. In contrast to PYTHIA, PHOJET incorpo-

rates both multiple soft- and (semi-) hard parton interac-
tions on the basis of a dual unitarization scheme [234].
In their initial investigations of UE [235] CDF used the

ISAJET Monte Carlo [236], which does not include multi-
ple scattering a la PYTHIA or HERWIG. Instead the beam
jets are added assuming that they are identical to a min-
imum bias event at the energy remaining after the hard
scattering. However, ISAJET did not describe the UE data
and has not been used in subsequent analyses.
Generally speaking, the Monte Carlo models which in-

clude multiple scattering have enough free parameters to
describe the most important features of data from HERA,
the Tevatron and of other data found in the JetWeb
database [237]. A program to tune the model parameters
is under way.

7.1.2 Underlying events at the Tevatron

In the standard analysis of hard scattering events one mea-
sures jet cross sections and jet properties, which in general
are very well described by QCD Monte Carlo models and
NLO QCD calculations, provided that jet pedestals are
properly parameterized. The uncertainty in the UE contri-
bution to jet events is actually dominating the systematic
errors for inclusive jet measurements. In order to under-
stand the physics of UE, special studies which go far be-
yond a simple parameterization of the energy flow outside
the jets, are required.
The CDF collaboration at the Tevatron has per-

formed [235, 238] detailed studies of the structure and
properties of the underlying event in two complementary
analyses of Run I data at

√
s = 1800 and

√
s = 630GeV.

The overall event structure was investigated using global
variables such as charged particle multiplicities and the
scalar sum of the transverse momenta of charged particles
as a function of the leading jet momentum. The sensitiv-
ity to UE is expected to be the highest in phase-space
regions perpendicular to the direction of the leading jet.
In the first analysis [235] jets were defined by applying the
simple cone algorithm to charged particles only. Since the
lower limit of the jet transverse momenta (scalar pT sum)
was chosen as low as 0.5 GeV, UE could be studied in the
transition region fromminimum bias events-to-events with
high transverse-momentum jets. In a later analysis [238]
jets were defined using the cone algorithm on calorimetric
objects with ET > 15–20 GeV. As shown in Fig. 51 (left)
the direction of the leading jet in each event is used to
define different regions in η–φ space: “toward”, “away”
and “transverse”. The “transverse” region is particularly
sensitive to the UE. In [238] the “transverse” region was
defined as the area in the η–φ plane covered by the two
cones with radii R=

√
(∆η)2+(∆φ)2 = 0.7 perpendicular

to the highest energy jet (Fig. 51 right). On an event-
by-event basis the regions of “minimal” and “maximal”
transverse momentum were defined as the regions con-
taining the smallest and largest scalar pT sum of charged
particles, respectively. Such an investigation of the UE
helps separating the initial and final state radiation com-
ponent from the “beam remnant” components. It can be
argued that transverse energy in the “minimal transverse”
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Fig. 51. Left: Illustration of correlations in the azimuthal
angle ∆φ relative to the direction of leading charged jet in the
event. The regions |∆φ |< 60, |∆φ |> 120 and 60<|∆φ |< 120
are referred to as “towards”, “away” and “transverse”. Each re-
gion covers the same range |∆η | × |∆φ |= 2×0◦. On an event-
by-event basis the regions “transverse minimum/maximum”
are defined to be the ones containing the minimum/maximum
transverse momentum. Right: The phase space regions, as de-
fined in the analysis [235], shown in the η–φ plane, where the
“transverse” regions are given by cones at±0◦ to the leading jet
direction

region (P 90,minT ) is due to multiple scattering while the
difference in transverse momentum between the “mini-
mal” and “maximal transverse” regions∆P 90T = P

90,max
T −

P 90,minT is a measure of the hard initial/final state ra-
diation connected to the primary interaction. The CDF
analyses have established several basic properties of UE,
illustrated in Figs. 52 (from [235]) and 53 (from [238]) and
listed below.

– In the “transverse” regions most sensitive to UE, the
average number of charged particles and the average
charged scalar pT sum grow very rapidly with the mo-
mentum of the leading jet. At pT(jet) > 5 GeV an ap-
proximately constant plateau is observed (Fig. 52). The
height of this plateau is at least twice that observed in
ordinary soft collisions at the corresponding energy. Al-
though models including multiple scatterings (soft or
semi-hard) predict a growth of both the average num-
ber of charged particles and the average charged scalar
pT sum at low momenta of the leading jet, they are
not able to describe the data in this region (pT(jet)<
5 GeV).
– For the leading jet above 50 GeV, P 90,minT is almost in-
dependent on the momentum of the leading jet which is
correctly described by HERWIG and PYTHIA.
– The difference ∆P 90T increases slowly.
– Neither PYTHIA nor HERWIG are able to reproduce
the PT distribution of tracks in minimum bias events
(not shown).

In summary, the QCD models implemented in the
PYTHIA and HERWIGMonte Carlo programs are able to
describe the most important features of the UE from the
Tevatron data. In both cases the agreement is reached only

Fig. 52. Data (taken from [235]) on the average number of
charged particles (pT > 0.5 GeV, | η |< 1) (top) and the scalar
pT sum of charged particles (bottom) in transverse region de-
fined in Fig. 51 as a function of transverse momentum of the
leading charged jet compared with Monte Carlo models

after careful tuning of many parameters, in particular the
regularization scale of the transverse momentum. Clearly
the experimental tests of the predictions from PYTHIA
and HERWIG concerning correlations and fluctuations in
the UE will be an important challenge over the coming
years [239].

7.1.3 Underlying event energy at HERA

At HERA, the interaction of electrons and protons via
the exchange of a quasi-real photon can result in the pro-
duction of jets. The photon may interact as a pointlike
particle in a so-called direct process (Fig. 54a) or it may
interact via its partonic structure such that a parton carry-
ing a fraction xγ of the photon momentum interacts with
a parton in the proton. In resolved processes the photon
remnant can interact with the proton remnant very much
like in hadron–hadron collisions. The center-of-mass en-
ergy in the γp system extends up to 300GeV, much below
the reach of the Tevatron. Thus the effects of MI at HERA
are certainly weaker and more difficult to study. On the
other hand studies of the photon properties from meas-
urements of UE at HERA are interesting and complemen-
tary to the measurements at hadron–hadron colliders. The
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Fig. 53. P 90,maxT , P
90,min
T and∆P 90T as a function of ET of the

highest energy jet at
√
s = 1800 GeV (bottom three plots) and√

s= 630 GeV (top three plots) taken from [238]. PYTHIA has
been tuned to describe the data

Fig. 54. Examples of LO QCD diagrams for photoproduction
of inclusive jets in direct a and resolved b photon interactions

experimental results presented in this section have been
published by the H1 collaboration [240]. They are based
on a sample where photoproduction events are tagged by
detecting the scattered electron and it contains three sub-
samples: the minimum bias sample (charged track with
momentum > 0.3 GeV+reconstructed vertex), the high-
ET sample (total transverse energy in the pseudorapidity
range−0.8< η < 3.3; ET > 20GeV) and the jet sample (at
least one jet with ET > 7 GeV).
At HERA the amount of energy which is carried by the

photon remnant can be estimated using the variable

xjetsγ =
Ejet1T e

−ηjet1 +Ejet2T e
−ηjet2

2Eγ
,

where xjetsγ is the fraction of the photon energy carried by

interacting parton, Ejet1T and Ejet2T are the energies of the
two jets with the highest transverse energies, and ηjet1 and
ηjet2 are their pseudorapidities. The energy of the photon,
Eγ , is determined from the energymeasured in the electron
tagger. Figure 55a from [240] shows the transverse energy
density outside the jets of two-jet events in the central ra-
pidity region. The data decrease as xjetsγ → 1 to the level
measured in deep inelastic ep scattering events, dominated
by direct photon processes. The dashed line in Fig. 55 indi-
cates the energy density measured in minimum bias events
(for which xjetsγ is not measurable). At small xjetsγ the en-
ergy density increases to the level found in hadron–hadron
collisions (≈ 0.3 at the SPS and the Tevatron). Both PHO-
JET and PYTHIA with the MI parameters suitably tuned
(pmiat depending on choice of the photon pdf) are able to
reproduce the data. This type of the measurement appar-
ently has no analog in hadron–hadron collisions. Energy–
energy correlations are sensitive measures of how the en-
ergy is distributed over the available phase space and pro-
vide important information for the modeling of UE. The
rapidity correlationΩ is defined as

Ω(η∗) =
1

Nev

×
Nev∑
i=1

(〈ET,η∗=0〉−ET,η∗=0)i(〈ET,η∗〉−ET,η∗)i
(E2T)i

.

(92)

Here ET is the total transverse energy measured in the H1
calorimeter and the other terms refer to transverse energies
measured in pseudorapidity bins of size ∆η = 0.22 in the
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Fig. 55. a The transverse energy density outside jets in the
central rapidity region, | ηγp |< 1, of γp collisions as a func-
tion of the momentum fraction xjetγ of the parton entering the
hard scattering process from the photon side. The data (taken
from [240]) are compared to models with multiple interac-
tions (PYTHIA mia, PHOJET) and without (PYTHIA). The
dashed horizontal line marks the energy density level of min-
imum bias events. b The observed rapidity correlations with
respect to the central rapidity of γp collisions, η∗ = 0. The
dashed (dotted) histogram represents calculations of the QCD
generator PYTHIA with (without) interactions of the beam
remnants

γp CMS. The average values were extracted from all events
in the sample. Figure 55b shows the rapidity correlations
from the highET sample. The data show a short range cor-
relation around the reference bin η∗ = 0 and a long range
anti-correlationwhich results from the hard scattering pro-
cess. PYTHIA without MI predicts an anti-correlation
which is too strong. Adding MI i.e. the addition of uncor-
related energy to the event results in a correct description
of the data. The same conclusion holds for an event sample
where jets are explicitly required (jet sample).
In summary, the underlying event in photoproduction

events can be consistently interpreted as the superposition
of a hard scattering process and interactions between the

beam spectators, as modeled by PYTHIA and PHOJET.
Processes with resolved photons at xγ ≈ 0 are found to pro-
duce 3.5 times the transverse energy density of minimum
bias events comparable with that observed in hadron–
hadron collisions at the SPS (UA1) and the Tevatron
(CDF). Studies of energy–energy correlations demonstrate
that the additional transverse energy in the event is not
correlated with the hard scattering process. Finally, the
contribution of higher order radiation to UE can be studied
separately using the kinematic quantity xγ to switch off the
beam remnant interactions.

7.1.4 Explicit observations of double hard scattering

The general signature of multiple parton scattering is an
increase in the transverse energy flow of the event. How-
ever, in extreme cases, the transverse energy of a secondary
interaction is sufficient to produce an additional pair of
jets. The observation of such events is highly important
for several reasons. It is sensitive to the phenomenology of
multiple parton interactions and provides direct informa-
tion on the structure of the proton in transverse space. It
is also important for estimating backgrounds to processes
producing di-boson (W+W−, etc.) and boson+ jets at the
LHC.
Double parton scattering (DP) in the simplest model

produces a final state that mimics a combination of two in-
dependent scatterings. It is customary [241] to express the
cross section for this process as a product of the cross sec-
tions for the individual hard scatterings divided by a scal-
ing factor, σeff:

σDP =m
σAσB

2σeff
.

The factorm is unity for indistinguishable scatterings and
has a value of two when it is possible to distinguish be-
tween A and B. This formula assumes that the number of
parton–parton interactions follows a Poisson distribution
but can also use other distributions e.g. Poisson statistics
for a given impact parameter [242]. The parameter σeff
describes the spatial distribution of partons [243] e.g. for
a model that assumes a proton with uniformly distributed
partons σeff = 11mb.
Events with four or more high transverse-momentum

objects (jets, leptons, prompt photons, . . . ) is an obvi-
ous place to look for signatures of multiple hard parton
interactions, although it should be realized that higher
order QCD processes, for which no exact QCD calcula-
tions are available yet, are dominating. Only few searches
for double-parton collisions at the ISR, the SPS and the
Tevatron have been performed and the results are not very
consistent [241, 244, 245]. Recently CDF published [246]
a strong signal for double parton scattering. In this analy-
sis a value of σeff = 14.5±1.7

+1.7
−2.3mb was extracted from

data in a model-independent way by comparing the num-
ber of observed double parton events to the number of
events with hard scatterings at the separate pp̄ collisions
within the same beam crossing. This represents a signifi-
cant improvement over previousmeasurements andmay be
used to constrain models using a parton spatial density.
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7.1.5 Multiple interaction component of the underlying
event at Tevatron and HERA: summary

Analyses of hadron–hadron and photon–hadron colli-
sions at the Tevatron and HERA have firmly established
the multiple interaction component of the underlying
event. Only QCD models which include secondary soft
or semi-hard scatterings á la [243] (PYTHIA, HERWIG,
PHOJET) are able to give a reasonable description of the
data. The energy flow of underlying events as measured
outside leading jets was studied in various phase-space
regions, applying conditions which help to disentangle con-
tributions from beam–beam interaction and initial/final
state radiation. At HERA the energy available to the pho-
ton beam remnant was used as an additional constraint.
The general structure of the underlying event is reasonably
well described by Monte Carlo generators like PYTHIA,
HERWIG and PHOJET, but a detailed understanding is
still missing. Studies of underlying events at HERA are
not as extensive as those by CDF at the Tevatron and it
would certainly be of great interest to apply the same an-
alysis methods to high energy γp, where xγ provides an
additional “degree of freedom”. The effects of the trans-
verse size of hadronic photon on the underlying event, i.e.
the Q2 dependence, has not been exploited at all so far.
The CDF Collaboration has reported a firm observation of
double hard parton scattering in the γ+3 jets final state
and has made an estimation of the effective cross section
for double parton scattering. This fact is of paramount im-
portance for the phenomenological understanding of the
underlying event, in constraining the multiple interaction
models [243, 247].

7.2 Gaps between jets and BFKL

The observation [248, 249] at the Tevatron of events with
a rapidity gap between two high transverse-energy (ET)
jets provides strong evidence for BFKL dynamics in terms
of color-singlet gluon ladder exchange [250]. As illustrated
in Fig. 56, the process can be described by elastic parton–
parton scattering via a hard color-singlet gluon ladder.
Since there is no color exchanged, no color fields (strings)
will be formed in between and hence no hadrons produced
through hadronization in the intermediate rapidity region.
In the high energy limit s/|t| � 1, where the parton

CMS energy is much larger than the momentum trans-
fer, the amplitude for this diagram is dominated by terms
∼ [αs ln(s/|t|)]n where the smallness of αs is compensated
by the large logarithm. These terms are resummed in the
BFKL equation, which describes the exchange of the whole
gluon ladder, including virtual corrections and reggeiza-
tion of gluons. When solving the equation numerically it
was found that non-leading corrections are very important
at the non-asymptotic energy of the Tevatron [250, 251].
Formulating the results as matrix elements for effect-

ive 2→ 2 parton scattering processes, they could be im-
plemented in the Lund Monte Carlo PYTHIA such that
parton showers and hadronization could be added to gen-
erate complete events. As shown in Fig. 57 these reproduce
the data, both in shape and absolute normalization, which

Fig. 56. Hard color singlet
exchange through a BFKL
gluon ladder giving a ra-
pidity gap between two
high-p⊥ jets

Fig. 57. Fraction of jet events having a rapidity gap in |η| < 1
between the jets versus the second-highest jet-ET. D0 data com-
pared to the color-singlet exchangemechanism [250] based on the
BFKLequationwithnon-leadingcorrectionsandwith theunder-
lying event treated in three ways: simple 3% gap survival proba-
bility, PYTHIA’s multiple interactions (MI) and hadronization
requiring a 15% gap survival probability, MI plus soft color in-
teractions (SCI) and hadronization with no need for an overall
renormalization factor. Also shown is the Mueller–Tang (MT)
asymptotic result with a 11% gap survival probability

is not at all trivial. The non-leading corrections are needed
since the asymptotic Mueller–Tang result has the wrong
ET dependence. A free gap survival probability parame-
ter, which in other models is introduced to get the cor-
rect overall normalization, is not needed in this approach.
Amazingly, the correct gap rate results from the complete
model including parton showers, parton multiple scatter-
ing and hadronization through PYTHIA together with the
soft color interaction model [252, 253]. The latter accounts
for QCD rescatterings [254] that are always present and if
these are ignored one needs to introduce an ad hoc 15% gap
survival probability factor.
Related to this are the new results from ZEUS [255]

on the production of J/ψ at large momentum transfer t
in photoproduction at HERA. The data, shown in Fig. 58,
agree well with perturbative QCD calculations [256], based
on the hard scales t and mcc̄, for two-gluon BFKL color-
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Fig. 58. Differential cross-section dσ/d|t| for the process γ+
p→ J/ψ+Y . ZEUS data compared [255] to BFKL model cal-
culations using leading log (LL) with fixed αs, and including
non-leading (non-L) corrections with fixed or running αs as well
as with a model based on leading log DGLAP

singlet exchange. As illustrated in Fig. 59, not only the
simple two-gluon exchange is included, but also the full
gluon ladder in either leading-logarithm approximation or
with non-leading corrections. Using a running αs does,
however, give a somewhat too steep t dependence com-
pared to the data. The conventional DGLAP approxima-
tion provides a good description in the range |t| <m2J/ψ
where this model [257] is argued to be valid due to ordered
momenta in the gluon ladder (cf. Fig. 59). However, the
DGLAP model gives a very weak dependence on the en-
ergyW , which is in contrast to the observed increase of the
cross section with energy as also results from the BFKL-
based calculations [255]. Altogether this provides another
evidence for BFKL dynamics.

7.3 Jets at small x

In the region of low x-values the interacting parton fre-
quently produces a cascade of emissions before it interacts
with the virtual photon. Due to the strong ordering in vir-
tuality, the emissions of the DGLAP evolution are very

Fig. 59. Diffractive vector meson pro-
duction at large momentum transfer as
described by perturbative QCD hard
color-singlet exchange via two gluons
and a gluon ladder in the BFKL frame-
work [256]

soft close to the proton direction, whereas BFKL emissions
can produce large transversemomenta in this region. Thus,
deviations from the DGLAP parton evolution scheme are
expected to be most visible in a region close to the direction
of the proton beam.
HERA has extended the available region in the Bjorken

scaling variable, xBj, down to values of xBj � 10−4, for
values of the four momentum transfer squared, Q2, larger
than a few GeV2, where perturbative calculations in QCD
are expected to be valid.
A measurement of the forward jet production cross sec-

tion at small xBj, as proposed by Mueller and
Navelet [258–260], has long been regarded as the most
promising test of perturbative parton dynamics. The idea
is to select events with a jet close to the proton direction
having the virtuality of the propagator closest to the pro-
ton approximately equal to the virtuality of the exchanged
photon. This will suppress an evolution with strong order-
ing in virtuality as is the case in the DGLAP evolution. The
additional requirement that the forward jet takes a large
fraction of the proton momentum, xjet = Ejet/Ep, such
that xjet� xBj, where xBj is the Bjorn variable, opens
up for an evolution where the propagators are strongly
ordered in the longitudinal momentum fraction like in the
BFKL scheme. Experimentally this is realized by demand-
ing the squared transverse momentum of the forward jet
to be of the same order as Q2 and xjet to be larger than
a preselected value which still gives reasonable statistics.
More exclusive final states, like those containing a di-jet
system in addition to the forward jet (called ‘2+forward
jet’), provide an additional handle to control the parton
dynamics.

Production of forward jets in DIS

The H1 experiment has measured the forward jet cross
section [261] using data collected in 1997, comprising an
integrated luminosity of 13.7 pb−1. The proton energy is
820GeV and the positron energy is 27.6GeV which corres-
pond to a center-of-mass energy of

√
s≈ 300GeV.

DIS events are obtained by applying the cuts Ee’
> 10GeV, 156◦ < θe< 175

◦, 0.1 < y < 0.7 and 5 GeV2 <
Q2 < 85 GeV2, where E′e is the energy of the scattered
electron, θe the polar angle, and y is the inelasticity of
the exchanged photon. Jets are defined using the inclu-
sive kt-jet algorithm [262, 263] applied in the Breit frame.
A forward jet is defined in the laboratory system as
having pt,jet > 3.5 GeV and being in the angular range
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7◦ < θjet < 20
◦. In order to enhance BFKL evolution it is

required that xjet > 0.035 whereas DGLAP evolution was
suppressed in the single differential cross section measure-
ment by introducing the requirement 0.5< p2t/Q

2 < 5.
Another event sample, called the ‘2+forward jet’ sam-

ple, is selected by requiring that, in addition to the forward
jet, at least two more jets are found, all of them having
pt,jet larger than 6 GeV. In this scenario the p

2
t/Q

2-cut is
not applied, due to the limited statistics.
The forward jet cross sections for single and triple dif-

ferential cross sections are compared to LO (αs) and NLO
(α2s ) calculations of direct photon interactions as obtained
from the DISENT program. Comparisons of the inclu-
sive forward jet cross sections with the DISENT predic-
tions for a di-jet final state are adequate, since the for-
ward jet events always contain at least one additional
jet due to the kinematics. The renormalization scale (µ2r )
is given by the average p2t of the di-jets from the hard
scattering process, while the factorization scale (µ2f ) is
given by the average p2t of all forward jets in the selected
sample.
In the analysis of events with two jets in addition to

the forward jet, the measured cross sections are compared
to the predictions of NLOJET++. This program provides
perturbative calculations of cross sections for three-jet pro-
duction in DIS at NLO (α3s) accuracy. In this case the

Fig. 60. The hadron level cross section for
forward jet production as a function of xBj
as measured by H1 [261] compared to NLO
predictions from DISENT (a) and to QCD
Monte Carlo models (b and c). The shaded
band around the data points shows the error
from the uncertainties in the energy scales of
the liquid argon calorimeter and the SpaCal
electromagnetic calorimeter. The hatched band
around the NLO calculations illustrates the
theoretical uncertainties in the calculations,
estimated as described in the text. The dashed
line in a shows the LO contribution

scales µr = µf are set to the average p
2
t of the three selected

jets in the calculated event.
The NLO calculations by DISENT [264, 265] and

NLOJET++ [266] are performed using the CTEQ6M [267]
parameterization of the parton distributions in the proton.

Single differential cross section

The measured single differential forward jet cross sections
on hadron level are compared with LO (αs) and NLO (α

2
s)

calculations from DISENT in Fig. 60a. In Fig. 60b and c
the data are compared to the various QCD models.
In Fig. 60a it can be observed that, at small xBj, the

NLO di-jet calculations from DISENT are significantly
larger than the LO contribution. This reflects the fact that
the contribution from forward jets in the LO scenario is
suppressed by kinematics. For small xBj the NLO con-
tribution is an order of magnitude larger than the LO
contribution. The NLO contribution opens up the phase
space for forward jets and improves the description of the
data considerably. However, the NLO di-jet predictions are
still a factor of 2 below the data at low xBj. The some-
what improved agreement at higher xBj can be understood
from the fact that the range in the longitudinal momen-
tum fraction which is available for higher order emissions
decreases.
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From Fig. 60b it is seen that the CCFM model (both
set-1 and set-2) predicts a somewhat harder xBj distribu-
tion, which results in a comparatively poor description of
the data.
Figure 60c shows that the DGLAP model with direct

photon interactions alone (RG-DIR) gives results similar
to the NLO di-jet calculations and falls below the data,
particularly in the low xBj region. The description of the
data by the DGLAP model is significantly improved if con-
tributions from resolved virtual photon interactions are
included (RG-DIR+RES). However, there is still a discrep-
ancy in the lowest xBj bin, where a possible BFKL sig-
nal would be expected to show up most prominently. The
CDMmodel, which gives emissions that are non-ordered in
transverse momentum, shows a behavior similar to the RG
DIR+RES model.

Events with reconstructed di-jets in addition to the
forward jet

By requiring the reconstruction of the two hardest jets in
the event in addition to the forward jet, different kinematic
regions can be investigated by applying cuts on the jet mo-
menta and their rapidity separation.
In this scenario it is demanded that all jets have trans-

verse momenta larger than 6 GeV. By applying the same
pt,jet-cut to all three jets, evolution with strong kt-ordering
is not favored. The jets are ordered in rapidity according
to ηfwdjet > ηjet2 > ηjet1 > ηe with ηe being the rapidity of
the scattered electron. The cross section is measured by
H1 [261] in two intervals of ∆η1 = ηjet2−ηjet1 . If the di-jet
system originates from the quarks q1 and q2 (see Fig. 61),
the phase space for evolution in x between the di-jet system
and the forward jet is increased by requiring that ∆η1 is
small and that∆η2 = ηfwdjet−ηjet2 is large.∆η1 < 1 favors
small invariant masses of the di-jet system and thereby
small values of xg (see Fig. 61). With ∆η2 large, xg carries
only a small fraction of the total propagating momentum,
leaving the rest for additional radiation.

Fig. 61. A schematic diagram of an event giving a forward jet
and two additional hard jets. These may stem from the quarks
(q1 and q2) in the hard scattering vertex or gluons in the parton
ladder. xg is the longitudinal momentum fraction carried by the
gluon, connecting to theharddi-jet system(in this case q1 and q2)

The directions of the other jets are related to the for-
ward jet through the∆η requirements. When∆η2 is small,
it is therefore possible that one or both of the additional
jets originate from gluon radiation close in rapidity space
to the forward jet. With ∆η1 large, BFKL-like evolution
may then occur between the two jets from the di-jet sys-
tem, or, with both ∆η1 and ∆η2 small, even between the
di-jet system and the hard scattering vertex. By studying
the cross section for different ∆η-values one can test the-
ory and models for event topologies where the k⊥ ordering
is broken at varying locations along the evolution chain.
In this investigation the same settings of the QCD

models are used as in Sect. 7.3, while the NLO three-jet
cross sections are calculated using NLOJET++.
From Fig. 62 it is observed that NLO three-jet gives

good agreement with the data if the two additional hard
jets are emitted in the central region (∆η2 large). It is inter-
esting to note that a fixed order calculation (α3s ), including
the log(1/x) term to the first order in αs, is able to describe
these data well. However, the more the additional hard jets
are shifted to the forward region (∆η2 small), the less well
are the data described by NLO three-jet. A possible expla-
nation is that the more forward the additional jets go, the
higher the probability is that one of them, or even both,
do not actually originate from quarks but from additional
radiated gluons. NLO three-jet calculates the NLO contri-
bution to final states containing one forward jet and two
jets from the di-quarks, i.e. it accounts for the emission
of one gluon in addition to the three jets. Since the radi-
ated gluon is predominantly soft it has a small probability
to produce a jet that fulfills the transverse-momentum re-
quirement applied in this analysis. This results in a deple-
tion of the theoretical cross section in the small∆η2 region,
which is more pronounced when∆η1 is also small, i.e. when
all three jets are in the forward region. Consequently a sig-
nificant deviation between data and NLOJET++ can be
observed for such events (see the lowest bin in Fig. 62b).
Accounting for still higher orders in αs might improve the
description of the data in this domain, since an increased
number of gluon emissions would enhance the probabil-
ity that one of the radiated gluons produces a jet which is
above the threshold on the transverse momentum.
As explained above, evolution with strong k⊥-ordering

is disfavored in this study. Radiation that is non-ordered
in k⊥ may occur at different locations along the evolution
chain, depending on the values of ∆η1 and ∆η2. In a com-
parison to QCD models (these figures are not shown; for
details see [261]) the following observations where made.
The color dipole model gives good agreement in all cases,
whereas the LO DGLAP models give cross sections that
are too low except when both ∆η1 and ∆η2 are large. For
this last topology all models and the NLO calculation agree
with the data, indicating that the available phase space
is exhausted and that little freedom is left for dynamical
variations.
Furthermore it was seen that the ‘2+forward jet’ sam-

ple differentiates between the CDM and the DGLAP re-
solved model, in contrast to the more inclusive samples
where CDM and RG-DIR+RES give the same predictions.
The conclusion is that additional breaking of the k⊥ order-
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Fig. 62. The cross section for events
with a reconstructed high transverse mo-
mentum di-jet system and a forward jet
as a function of the rapidity separation
between the forward jet and the most
forward-going additional jet,∆η2 as meas-
ured by H1 [261]. Results are shown for
the full sample and for two ranges of the
separation between the two additional
jets, ∆η1 < 1 and ∆η1 > 1. The data are
compared to the predictions of a three-
jet NLO calculation from NLOJET++.
The band around the data points illus-
trates the error due to the uncertainties
in the calorimetric energy scales. The
band around the NLO calculations illus-
trates the theoretical uncertainties in the
calculations

ing is needed compared to what is included in the resolved
photon model [261].

7.4 Production of neutral strange particles
in deep-inelastic scattering at HERA

In deep inelastic scattering strange particles can be pro-
duced either if a strange quark is interacting in the
hard sub-process, or if strange quark pairs are produced
during the hadronization process. The production of
strange particles is sensitive to soft and hard parton ra-
diation of the initial and final state partons and is thus
a complementary approach to small-x processes. Other
sources of strangeness can be the decays of charm hadrons
or more exotic particles like glueballs, pentaquarks or
instantons.
The production properties of strange particles are not

yet fully understood nor described by the QCD models.
Since strange particles are also produced during the
hadronization process, a measurement of strange particle
production is also a means to test the universality of
hadronization in e+e−, pp or ep collisions.

The inclusive production cross sections of strange neu-
tral particles, namely K0S mesons and Λ baryons

3, in deep
inelastic ep scattering at HERA were measured with the
H1 detector [268]. The analyzed data were collected in
the years 1996 and 1997 at a center-of-mass energy of
300GeV and with an integrated luminosity of 17.8 pb−1.
The kinematic region 2GeV2 <Q2 < 100GeV2 and 0.1<
y < 0.6 is investigated, where Q2 is the squared momen-
tum transfer and y the inelasticity. This allows for probing
a very low Bjorken variable x, x > 10−5. K0S mesons and
Λ baryons are reconstructed via the decay to π−π+ and
π−p, respectively. The production of K0S and Λ is meas-
ured within the visual range, defined by −1.3 < η < 1.3
and 0.5GeV < pT < 3.5GeV, where η is the pseudorapid-
ity and pT the transverse momentum in the laboratory
frame.
Comparisons of the total K0S and Λ cross sections with

models using the Lund string hadronization [269–273]
show that a lower strangeness suppression factor of λs ≈
0.2–0.25 is preferred to the default value of λs = 0.3.

3 By Λ baryons the Λ particle and its antiparticle Λ̄ are re-
ferred to.
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Fig. 63. Differential K0S and Λ production
cross sections in the laboratory frame

Fig. 64. η dependence of K0S and Λ cross
sections in the laboratory frame compared to
MEPS and a modified MEPS model with only
BGF hard subprocess

The differential cross sections in the laboratory and
the Breit frame are compared to different model pre-
dictions, namely the MEPS (matrix element and par-
ton shower) model using the RAPGAP event genera-
tor [274], CCFM [24–26] implemented in the CASCADE
program [20, 50], the color dipole model (CDM) [275–
280] using DJANGOH [281] and to predictions by the
HERWIG [228, 229] event generator. The HERWIG pre-
diction for the Λ cross section is normalized to the observed
total cross section, since HERWIG overestimates the cross
section by a factor of 3.
Figure 63 shows the η and pT dependence of the K

0
S

and Λ cross sections in the laboratory frame compared
to the model predictions by MEPS and CCFM, using
a strangeness suppression factor of λs = 0.2 and λs = 0.25
in the Lund string model, respectively. The preliminary
data are shown with statistical and systematic errors; the
systematic uncertainty of the cross section due to the un-
certainty of the tracking efficiency is separately shown as
a grey band.

The η spectrum of K0S production cannot be repro-
duced by the MEPS model, while CCFM gives a better
description. In Λ production a rise in the forward direction,
defined by the direction of the outgoing proton beam, is ob-
served, which is not present in any of the models. The pT
distribution of the K0S and the Λ cross section are too soft
in MEPS as well as in CCFM.
The CCFM model yields a better description of the η

spectra in the data than the MEPS model. In addition,
CCFM, in its implementation in the CASCADE program,
allows only for gluon induced hard sub-processes.
In Fig. 64 the data are compared to a modified MEPS

model (BGF), where only boson–gluon fusion processes are
taken into account, while quark induced sub-processes are
switched off. This modified MEPS model gives a slightly
better description of the data than the standard MEPS
predictions.
The differentialK0S and Λ production cross sections are

investigated as functions of xp = 2|p|/Q and pT in the Breit
frame.
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Fig. 65. Target hemisphere of the Breit
frame: xp = 2|p|/Q and pT dependence of
K0S and Λ cross sections in the target hemi-
sphere of the Breit frame

Fig. 66. Current hemisphere of the Breit
frame: xp = 2|p|/Q and pT dependence of
K0S and Λ cross sections in the current hemi-
sphere of the Breit frame

The Breit frame can be divided into the target hemi-
sphere of the fragmenting proton and the current hemi-
sphere in the direction of the incoming photon, which is
related to the fragmentation of the current quark.
In the target hemisphere of the Breit frame (Fig. 65) all

four models underestimate the K0S and Λ cross section at

large xp and the pT spectra are modeled too softly in most
of the models.
Only a small fraction of allK0S and Λ decays is found in

the current hemisphere of the Breit frame, leading to large
statistical errors of the differential cross sections shown
in Fig. 66. Within these errors CDM gives the best descrip-
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tion of the xp and pT dependence of the differentialK
0
S and

Λ cross sections.
Concluding one can say that none of the models gives

a satisfactory description of the observed cross sections of
neutral strange particle production. In particular the simu-
lated transverse-momentum spectra are too soft. A signifi-
cant increase of Λ baryon production was observed in the
region 0< η < 1.3 in the laboratory frame, which is not re-
produced by any of the models.
The comparison with QCD models using the Lund

string hadronization reveals that a lower strangeness sup-
pression factor than the standard LEP-value seems to be
preferred at HERA.
The cross sections and comparisons shown here are re-

sults of a Ph.D. thesis [268].

8 Outlook

Studies of QCD in high energy ep collisions are interesting
in themselves, QCD being a highly non-trivial theory due
to its non-linear nature with a non-trivial vacuum. It is also
important in order to fully understand the background in
attempts to find signals for physics beyond the standard
model at the LHC and future high energy colliders.
For the timelike cascades in e+e− annihilation, experi-

mental data are reproduced to an extent beyond expecta-
tions, by a perturbative parton cascade (if only the first
gluon emission is adjusted to matrix elements) followed by
a model for the subsequent non-perturbative hadroniza-
tion. To describe the spacelike cascades in ep scattering
at high energies poses a much more difficult challenge.
k⊥-factorization and leading-order BFKL evolution offer
a qualitative frame of reference at small x, but do not give
a quantitative description of the experimental data. Non-
leading contributions are large, and the separation between
perturbative and non-perturbative effects in the timelike
cascades is not realized in the corresponding spacelike
processes.
The non-leading contributions are essential also for

the behaviour at asymptotic energies. They give asymp-
totically small corrections to the evolution equation, but
not to its solution. The leading-order equation fixes the
solution to the powerlike form ∼ x−λ (with logarithmic
corrections), but the power λ is affected by the non-
leading terms, which therefore have a very large effect. The
perturbative–non-perturbative interplay is important in
two regimes. Firstly, the random walk in ln k2⊥, character-
istic for the BFKL evolution chain, extends down into the
soft regime. This problem is further enhanced by a running
coupling αs. Secondly, the high gluon densities at small
x imply that unitarity constraints and saturation become
essential. This means that non-perturbative effects are im-
portant also at larger k⊥, where the running coupling is
small.
Recent progress, described in this report, includes in

particular the following.

– Extending the k⊥-factorization formalism introducing
two-scale unintegrated and doubly unintegrated PDFs

and investigation of the importance of the correct kine-
matics even at lowest order.
– The solution to the BFKL evolution at NLO, and the
NLO γ∗ impact factor.
– BFKL dynamics in other fields, exemplified by QQ̄-
production and away-from-jet energy flow in e+e− an-
nihilation.
– Studies of unitarity corrections and saturation via the
Balitsky–Kovchegov equation.
– Going beyond leading order in the BK equation,
where in particular energy-momentum conservation
has a large effect.
– AGK cutting rules in QCD, multi-pomeron exchange
and diffraction.
– Phenomenological applications and comparisons with
experimental data. Here studies of forward jet and
heavy quark production are of particular interest.

Further work is still needed within all these fields. The
impact parameter dependence and correlations, as well as
generalizations to eA collisions, need to be studied. This
is particularly important to get a better understanding of
high energy proton–proton collisions. To fully understand
the dynamics of small-x physics we need in the future also
to be able to combine the different routes listed above in
a unifying formalism, which can simultaneously account
for the effects of NLO (and NNLO) contributions and uni-
tarity and saturation effects including multi-pomeron ex-
change, pomeron loops and diffraction.
The detailed understanding of small-x physics is essen-

tial for the understanding of the underlying event structure
observed at Tevatron and which is expected to be even
more significant at the LHC. Small x physics is an import-
ant issue on its own right and is important also for the
understanding of the QCD background for any searches.
Small-x physics is very complicated due to the large phase
space opened but it offers also the possibility to understand
the transition from a dilute to a dense system in a system-
atic way and thus contributes much to the understanding
of complicated processes in general.
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